Contents

Foreword .. 5

1 Introduction to ferroresonance oscillations 11
1.1 Scope .. 11
1.2 Forced oscillations in non-linear resonance circuits, general considerations .. 13
1.2.1 Definitions of system stabilities 14
1.3 Excitation of steady state and non-steady state ferroresonance oscillations ... 15
1.4 Inductive voltage transformer 18
1.5 Non-linear magnetization characteristic 20
1.5.1 Introduction .. 20
1.5.2 Measuring of the magnetization curves 23
1.5.2.1 Measuring of magnetization curves with an analog measuring circuit ... 23
1.5.2.2 Digital measuring setup for the hysteresis loop and the magnetization curve of silicon-iron cores .. 27
1.5.3 Magnetic core design ... 31

2 Theoretical considerations of non-linear oscillations 35
2.1 The first solution by Rüdenberg, graphical treatment for power frequency ferroresonance oscillations 35
2.1.1 Preliminary remarks .. 35
2.1.2 Ferroresonance circuit without energy losses 35
2.2 Voltage and current during a single period of ferroresonance oscillation at power frequency .. 40
2.3 Analytical description of oscillations in non-linear circuits 43
2.3.1 Introduction: Developments in the theory of ferroresonance oscillations ... 43
2.3.2 Analytical model ... 43
2.3.3 The differential equation for ferroresonance oscillations 48
2.3.4 Oscillation frequencies in ferroresonance systems 50
2.3.5 Solution of the differential equation for the network frequency $f_0 = 50$ Hz or 60 Hz; $\omega_0 = 2 \pi f_0 [1/s]$.. 51
2.3.6 Solution of the non-linear differential (2.22)
for the second subharmonic $f_0/2$ 53

2.3.7 Solution of the non-linear differential equation (2.22)
for the third subharmonic frequency $f_0/3$ 54

3 Single-phase ferroresonance oscillation 59
3.1 Introduction .. 59
3.2 General schematic diagram for single-phase ferroresonance 59
3.3 Practical cases of ferroresonance configurations 61
3.4 Parameters relevant ferroresonance 63
3.5 Ferroresonance in CVTs ... 64
3.6 The simplification of non-linear electrical circuits with the
theorem of Thévenin .. 65

4 Three-phase ferroresonance oscillations 67
4.1 Introduction .. 67
4.2 Resulting Waveform of three-phase Ferroresonance Oscillations .. 68
4.3 Physical explanation for the beat 72
4.4 Practical example ... 72
4.5 Results of field tests ... 74
4.5.1 Example 1 ... 75
4.5.2 Example 2 ... 77
4.5.3 Example 3 ... 80
4.5.4 Example 4 ... 82

5 Simulation of ferroresonance oscillations 83
5.1 Schematic circuit and circuit elements of single phase ferroresonance
configuration .. 84
5.2 Circuit losses ... 86
5.3 Magnetization curve .. 87
5.3.1 Analytical approximation of the magnetization curve 88
5.3.2 Iron losses ... 89
5.3.3 Representation of hysteresis curve 90
5.4 Characterization of ferroresonance oscillations 91
5.4.1 Non-steady-state (transient) ferroresonance oscillations 93
5.4.2 Steady-state ferroresonance oscillation at power frequency ... 95
5.4.3 Steady-state subharmonic ferroresonance oscillation 97
5.4.4 Steady-state chaotic ferroresonance oscillation 97
5.5 Discussion of single phase ferroresonance behavior 99
5.5.1 Dependence on switching phase angle 99