Inhaltsverzeichnis

Abbildungsverzeichnis xiii
Tabellenverzeichnis xvii
Abkürzungsverzeichnis xix
Symbolverzeichnis xxi

1. Einleitung 1
1.1. Notwendigkeit transienter Simulationen am Beispiel von Elektroenergiesystemen 1
1.2. Bekannte Ansätze zur Steigerung der Recheneffizienz 2
1.2.1. Ordnungsreduktion .. 2
1.2.2. Behandlung gekoppelter Systeme 5
1.2.3. Simulationswerkzeuge 6
1.3. Ziele der vorliegenden Arbeit 6
1.4. Abgrenzung der durchgeführten Betrachtungen 7
1.5. Aufbau der Arbeit ... 8

2. Ordnungsreduktion linearer Systeme 11
2.1. Allgemeines zur projektiven Ordnungsreduktion 12
2.2. Modale Ordnungsreduktion 15
2.2.1. Transformationsschritt 15
2.2.2. Reduktionsschritt .. 15
2.2.3. Verfahrensvarianten 16
2.3. Balanciertes Abschneiden 17
2.3.1. Transformationsschritt 17
2.3.2. Reduktionsschritt .. 19
2.3.3. Verfahrensvarianten 19
2.4. Krylov-Unterraummethoden 20
2.4.1. Übertragungsfunktion und deren Momente 20
2.4.2. Reduziertes System im Krylov-Unterraum 22
2.4.3. Berechnungsmethoden und Verfahrensvarianten 23
2.5. Komplexitätsreduktion unter Beibehaltung originaler Zustandskoordinaten 26
3. Ordnungsreduktion nichtlinearer Systeme
 3.1. Herausforderungen bei der Reduktion nichtlinearer Systeme 30
 3.1.1. Ermittlung eines dimensionsreduzierten Unterraumes 31
 3.1.2. Behandlung der Nichtlinearität 32
 3.2. TPWL-basierte Ordnungsreduktion 34
 3.2.1. TPWL-Approximation des Originalsystems 35
 3.2.2. Auswahl der Linearisierungspunkte 36
 3.2.3. Gewichtung der Teilsysteme 37
 3.2.4. Ordnungsreduktion der TPWL-Approximation 39
 3.2.5. Komplexitätsreduktion der TPWL-Approximation 40

4. Beschreibung gekoppelter Systeme 41
 4.1. Anforderungen an die Beschreibung gekoppelter Systeme 42
 4.2. Kopplung durch Eingangs-Ausgangs-Substitution nach Hermann 43
 4.2.1. Teilsystemdefinition und Systemtupelschreibweise 43
 4.2.2. Kopplung von Teilsystemen 44
 4.2.3. Fazit ... 51
 4.3. Verbindungsformalismus nach Michel 51
 4.3.1. Teilsystemdefinition 52
 4.3.2. Kopplung von Teilsystemen 52
 4.3.3. Fazit ... 53
 4.4. Komponentenverbindungsmodell (CCM) 55
 4.4.1. Teilsystemdefinition (Komponenten) 56
 4.4.2. Komponentenverbund 56
 4.4.3. Verbundene Komponente und Verbindungsgleichung 57
 4.4.4. Auflösung der CCM-Struktur 59
 4.4.5. Illustrationsbeispiel 61
 4.4.6. Fazit ... 63
 4.5. Modifiziertes Komponentenverbindungsmodell (mCCM) 64
 4.5.1. Komponentendefinition und Komponentenverbund 65
 4.5.2. Verbundene Komponente und Verbindungsgleichung 66
 4.5.3. Hierarchisch verbundene Komponente 69
 4.5.4. Auswertung der Komponentenfunktionen 71
 4.5.5. Illustrationsbeispiel 80
 4.5.6. Fazit ... 81

5. Ordnungsreduktion im mCCM-Kontext 83
 5.1. Teilsystemreduktion .. 83
 5.2. Erzwingung reduzierbarer Systemstrukturen 84
 5.3. Effiziente Erzeugung von TPWL-Approximationen 85
 5.3.1. Trainingstrajectorie 85
 5.3.2. Systemmatrizen .. 85
6. CoSimMA – eine mCCM–basierte modulare Simulationsumgebung 87
 6.1. Objektorientierte Programmierung als Mittel der Wahl 87
 6.2. Objektorientierte Interpretation des mCCM 88
 6.3. Weitere Simulatormodule .. 89
7. Anwendungsbeispiel 91
 7.1. Elektroenergiesystem als hierarchisch gekoppeltes System 91
 7.2. Hierarchischer Aufbau des Beispielsystems 93
 7.2.1. Synchrongeneratormodell mit Reglern 93
 7.2.2. Leitungs-, Transformator- und Lastmodelle 95
 7.2.3. Leistungsfloss- und Anfangswertberechnung 96
 7.3. Simulationsszenario .. 98
 7.4. Simulationen mit reduzierten Modellen 100
 7.4.1. Linearisiertes Gesamtmodell 100
 7.4.2. Reduktion eines linearen Teilsystems 101
 7.4.3. TPWL-Approximation des Gesamtsystems 103
 7.4.4. Ordnungsreduktion der TPWL-Approximation 106
 7.4.5. Komplexitätsreduktion der TPWL-Approximation 107
 7.5. Abschließender Vergleich und Fazit 110
8. Zusammenfassung und Ausblick 113
 8.1. Zusammenfassung wesentlicher Ergebnisse 113
 8.2. Möglichkeiten weiterführender Forschung 115
A. Ergänzungen zur linearen Ordnungsreduktion 117
 A.1. Zur Berechnung der Systemmatrizen bei der Residualisierung 117
 A.2. Zum Begriff der projektiven Ordnungsreduktion 119
 A.3. Zum Transformationsverhalten Gramscher Steuer- und Beobachtbarkeits-
 matrizen ... 122
 A.5. Zur Darstellung projizierter Zustandsraummodelle 125
B. Kartesisches Produkt von Systemtupeln und Funktionen 127
C. Behandlung allgemeinerer Komponententypen im mCCM 131
D. Ergänzende Dokumentation zum Anwendungsbeispiel 133
 D.1. Normiertes Einheitensystem .. 133
 D.1.1. Basisgrößen ... 133
 D.1.2. Abgeleitete Bezugsgrößen 133
 D.1.3. Wechsel der Bezugsgrößen 133
 D.1.4. Verwendete Bezugsgrößen für das Anwendungsbeispiel 134
 D.2. Betriebsmittelmodelle .. 135
 D.2.1. Synchrongenerator .. 135
D.2.2. Regler .. 144
D.3. Dokumentation zu den durchgeführten Simulationsrechnungen 151
 D.3.1. Rechner ... 151
 D.3.2. Software .. 151
 D.3.3. ODE-Löser .. 151
 D.3.4. Bestimmung der Rechenzeiten 151

Literaturverzeichnis ... 153
Publikationen .. 169
Betreute studentische Arbeiten 173
Lebenslauf .. 175