Inhaltsverzeichnis

Inhaltsverzeichnis

Kapitel	Nr. Kapitel – Bezeichnung	Seitenzahl	Kapite	Nr. Kapitel – Bezeichnung	Seitenzah
1	Kreisförmige Leiterbewegung im Magnetfeld	6 – 7	37	Reihenschaltung aus R, X_L und X_C	82 – 83
2	Kreisförmig drehende Leiterschlaufe im Magnetfeld	8 – 9	38	Parallelschaltung aus R, X_L und X_C	84 – 85
3	Frequenz, Polzahl und Wellenlänge	10 – 11	39	Gemischte Schaltung aus R und X _C	86 – 87
4	Bogenmass und Kreisfrequenz	12 – 13	40	Gemischte Schaltung aus R und X _L	88 – 89
5	Sinusförmige Wechselspannung / Wechselstrom (1. Teil)	14 – 15	41	Gemischte Schaltung aus X_{C} und X_{L}	90 – 91
6	Sinusförmige Wechselspannung / Wechselstrom (2. Teil)	16 – 17	42	Gemischte Schaltung aus R, X _L und X _C	92 – 93
7	Phasenverschiebungswinkel	18 – 19	43	Elektrische Schwingkreise	94 – 95
8	Zeitlicher Verlauf von Wechselgrössen	20 – 21	44	Reihen- oder Spannungsresonanz	96 – 97
9	Scheitelwert und Effektivwert	22 – 24	45	Parallel- oder Stromresonanz	98 – 99
10	Arithmetischer Mittelwert und Gleichrichtwert	25 – 26	46	Frequenzglieder: Tiefpassschaltung	100 – 101
11	Formfaktor und Scheitelfaktor	27 – 28	47	Frequenzglieder: Hochpassschaltung	102 – 103
12	Zusammenfassung der Wechselgrössen	29 – 30	48	Frequenzglieder: Bandpässe und Bandsperren	104 – 105
13	Addition phasenverschobener Wechselgrössen	31 – 32	49	Integrier- und Differenzierschaltungen	106 – 107
14	Wirkwiderstand im Wechselstromkreis	33 – 34	50	Blindleistungskompensation bei Wechselstromverbrauchern	108 – 109
15	Idealer Kondensator im Wechselstromkreis	35 – 36	51	Ermitteln der Kompensationsblindleistung mit dem Einheitskreis	110 – 111
16	Ideale Spule im Wechselstromkreis	37 – 38			
17	Leistung / Energie in einem Wirkwiderstand	39 – 40	52	Grundschwingung und Oberschwingungen	112 – 113
18	Leistung / Energie in einem idealen Kondensator	41 – 42	53	Netzspannungs – Oberschwingungen	114 – 115
19	Leistung / Energie in einer idealen Spule	43 – 44	54	Leistungen in Netzen mit Stromoberwellen	116 – 117
20	Reihenschaltung von idealen Kapazitäten	45 – 46	55	Dreiphasenwechselstrom (Drehstrom)	118 – 119
21	Parallelschaltung von idealen Kapazitäten	47 – 48	56	Leistung bei Dreiphasenwechselstrom (Drehstrom)	120 – 121
22	Gemischte Schaltung von idealen Kapazitäten	49 – 50	57	Sternschaltung mit symmetrischer Last	122 – 124
23	Reihenschaltung von idealen Induktivitäten	51 – 52	58	Sternschaltung mit unsymmetrischer Last (wird auch asymmetrisch genannt)	125 – 127
24	Parallelschaltung von idealen Induktivitäten	53 – 54	59	Dreieckschaltung mit symmetrischer Last	128 – 130
25	Gemischte Schaltung von idealen Induktivitäten	55 – 56	60	Dreieckschaltung mit unsymmetrischer Last (wird auch asymmetrisch genannt)	131 – 133
			61	Vierleiter – Drehstromnetz mit gemischter Last	134 – 136
26	Reihenschaltung aus Wirk- und kapazitivem Blindwiderstand (1. Teil)	57 – 58	62	Sternschaltung mit Neutralleiterunterbruch	137 – 139
27	Reihenschaltung aus Wirk- und kapazitivem Blindwiderstand (2. Teil)	59 – 60	63	•	
28	Reihenschaltung aus Wirk- und induktivem Blindwiderstand (1. Teil)	61 – 62		Leistung symmetrischer Drehstromverbraucher mit Störungen	140 – 142
29	Reale Spule im Wechselstromkreis	63 – 64	64	Drehstromasynchronmotoren im Drehstromnetz	143 – 145
	Reihenschaltung aus Wirk- und induktivem Blindwiderstand (2. Teil)		65	Blindleistungskompensation im Drehstromnetz (Einzelkompensation)	146 – 147
30	Reihenschaltung aus Wirk- und induktivem Blindwiderstand (3. Teil)	65 – 67	66	Blindleistungskompensation im Drehstromnetz (Gruppenkompensation)	148 – 149
31	Parallelschaltung aus Wirk- und kapazitivem Blindwiderstand (1. Teil)	68 – 69	67	Blindleistungskompensation im Drehstromnetz (Zentralkompensation)	150 – 152
32	Realer Kondensator im Wechselstromkreis	70 – 71	.	Zimanotan gonomponotation in 21010to on into (2011aliton) ponotation/	.00 .01
	Parallelschaltung aus Wirk- und kapazitivem Blindwiderstand (2. Teil)		68	Oberschwingungen im Vierleiter – Drehstromnetz	153 – 154
33	Parallelschaltung aus Wirk- und kapazitivem Blindwiderstand (3. Teil)	72 – 74			
34	Parallelschaltung aus Wirk- und induktivem Blindwiderstand (1. Teil)	75 – 76	69	Spannungsfall bei unverzweigten Leitungen (ohmsche Last an 230V)	155 – 156
35	Motor im Wechselstromkreis	77 – 78	70	Spannungsfall bei unverzweigten Leitungen (Last mit $cos\phi$ < 1 an 230V)	157 – 159
	Parallelschaltung aus Wirk- und induktivem Blindwiderstand (2. Teil)		71	Spannungsfall bei verzweigten Leitungen (ohmsche Last an 230V)	160 – 162
36	Parallelschaltung aus Wirk- und induktivem Blindwiderstand (3. Teil)	79 – 81	72	Spannungsfall bei verzweigten Leitungen (Last mit cosφ < 1 an 230V)	163 – 164

Inhaltsverzeichnis

Kapitel	Seitenzahl	
73	Spannungsfall im Drehstromnetz (ohmsche Last am Drehstromnetz)	165 – 166
74	Spannungsfall im Drehstromnetz (Last mit $cos\phi$ < 1 am Drehstromnetz)	167 – 168
75	Spannungsfall bei verzweigten Leitungen (ohmsche Last am Drehstromnetz)	169 – 170
76	Spannungsfall bei verzweigten Leitungen (Last mit cos	171 – 173
77	Einphasentransformator: Funktionsweise	174 – 175
78	Einphasentransformator: Spannungs-/ Strom-/ Widerstandsübersetzung	176 – 177
79	Einphasentransformator: Betrachtung im Belastungsfall	178 – 179
80	Einphasentransformator: Kurzschlussspannung	180 – 181
81	Einphasentransformator: Dauer- und Stosskurzschlussstrom	182 – 183
82	Einphasentransformator: Verluste im Leerlauf und im Belastungsfall	184 – 185
83	Einphasen- und Drehstromtransformator: Wirkungsgrad	186 – 187
84	Drehstromtransformator: Übersetzung	188 – 189
85	Drehstromtransformator: Bemessung von Transformatoren	190 – 191
86	Drehstromtransformator: Parallelschalten von Transformatoren	192 – 193
87	Kurzschlussstromberechnung in Niederspannungsnetze (1. Teil)	194 – 195
88	Kurzschlussstromberechnung in Niederspannungsnetze (2. Teil)	196 – 198
89	Nachweis thermischer Kurzschlussfestigkeit	199 – 200
90	Licht (Wellen- und Quantentheorie)	201 – 202
91	Lichtstrom, Lichtmenge und Lichtausbeute	203 – 204
92	Raumwinkel und Lichtstärke	205 – 206
93	Beleuchtungsstärke	207 – 208
94	Raumwirkungsgrad	209 – 210
95	Leuchten-, Leuchtenbetriebs- und Beleuchtungswirkungsgrad	211 – 212
96	Dimensionierung von Beleuchtungsanlagen	213 – 215
	Anhang 1 / 2	216
	Anhang 3 / 4 / 5 / 6 / 7	217
	Anhang 8	218
	Anhang 9	219 – 224
	Anhang 10 / 11	225
	Anhang 12	226
	Anhang 13	227 – 229
	Anhang 14 / 15 / 16	230
	Anhang 17	231
	Anhang 18	231 – 233
	Überstromunterbrecher DIAZED	234
	Zuordnung Nennauslösestromstärke der ÜUB zu den Leiterquerschnitten	234
	Literatur	235