1 Grundlagen der SHK-Technik und der Betriebswirtschaftslehre

1.1 Rechenarten, Größen und Formelzeichen

Grundrechenarten

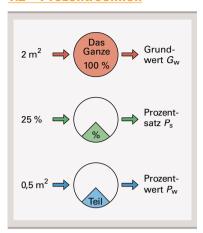
Rechenart	Erklärung	Zahlenbeispiel
Addition (+)	Summand + Summand = Summe 3+4 = 7	
Subtraktion (-)	Minuend – Subtrahend = Differenz	8 – 2 = 6
Multiplikation (*)	Faktor · Faktor = Produkt	5 · 3 = 15
Division (:)	Dividend : Divisor = Quotient	12:2 = 6

Schreibweise von Variablen

Zeichen	Algebraisches Beispiel
Das Multiplikationszeichen (der Malpunkt) zwischen Zahl und Variable (Buchstabe) oder den Variablen kann weggelassen werden.	$5 \cdot x = 5 x$ $x \cdot y = xy$
Der Faktor 1 wird in der Regel nicht geschrieben.	$1 \cdot x = x$

Griechisches Alphabet

Klein- buch:	Groß- stabe	Name	Verwendung, Größe	Klein- buch	Groß- stabe	Name	Verwendung, Größe
α	A	Alpha	Winkel	ν	N	Ny	
β	В	Beta	Winkel	ξ	Ξ	Xi	
γ	Γ	Gamma	Winkel	0	0	Omikron	
δ	Δ	Delta	Unterschied, Winkel	π	П	Pi	Kreisberechnung
ε	E	Epsilon	Winkel	Q	P	Rho	Dichte
ζ	Z	Zeta	Widerstandsbeiwert	σ	Σ	Sigma	Summe
η	Н	Eta	Wirkungsgrad	τ	T	Tau	
θ, θ	Θ	Theta	Temperatur	υ	Υ	Ypsilon	
ı	I	Jota		φ	Φ	Phi	Luftfeuchte
х	K	Карра		χ	X	Chi	
λ	Λ	Lambda	Wärmeleitfähigkeit	Ψ	Ψ	Psi	Abflussbeiwert
μ	M	Му	Rauigkeit	ω	Ω	Omega	Widerstand


Dezimale Vielfache und Teile von Einheiten

Zehnerpotenz	Zahlenwert	Name	Vorsilbe	Zeichen	Einheit
10 ⁶	1000000	Million	Mega	M	56 MBjt/s
10 ³	1000	Tausend	Kilo	k	70 kg
10 ²	100	Hundert	Hekto	h	3 hPa
10 ¹	10	Zehn	Deka	da	1 daHz
10 ⁰	1	Eins	_	_	5 · 1 m
10 ⁻¹	0,1	Zehntel	Dezi	d	4 dl
10-2	0,01	Hunderstel	Zenti	С	23 cm
10-3	0,001	Tausendstel	Milli	m	6 mm
10 ⁻⁶	0,000001	Millionstel	Mikro	μ	50 μΑ

Größen, Formelzeichen und Einheiten (Auswahl)

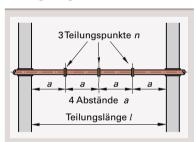
Größe	Formelzeichen	Einheit	Einheitenzeichen	Ergänzende Angaben
Stoffmenge	n	Mol	mol	1 mol ≙ 6,022 · 10 ²³ Teilchen
Länge, Breite	l, b	Meter	m	1 inch (ZoII) = 25,4 mm
Fläche	A	Quadratmeter	m ²	1 a = 100 m ²
Volumen	V	Kubikmeter	m ³	11 = 1 dm ³
Volumenstrom	, v	Liter durch Sekunde	l/s	m ³ /h, dm ³ /s
Zeit	t	Sekunde	s	min, h, d, a
Frequenz	f	Hertz	Hz	1 Hz = 1/s
Umdrehungsfrequenz, Drehzahl	n		1/s	1/s = 60/min
Geschwindigkeit	v		m/s	1 m/s = 3,6 km/h
Beschleunigung	а		m/s ²	
Fallbeschleunigung	g		m/s ²	$g = 9.81 \text{ m/s}^2 (\approx 10 \text{ m/s}^2)$
Temperatur	θ , ϑ	Grad Celsius	°C	0 °C = 273,15 K
Thermodynamische Temperatur	Т	Kelvin	K	0 K = -273,15 °C
Wärme, Wärmemenge	а	Joule	J	$1 J = 1 N \cdot m = 1 W \cdot s$ (3600 kJ = 1 kWh)
spezifische Wärmekapazität	С		kJ/(kg·K)	
Wärmedurchgangs- koeffizient (<i>U</i> -Wert)	U	Watt durch m² und Kelvin	W/(m ² · K)	
Wärmeleitzahl	λ	Watt durch Meter und Kelvin	W/(m·K)	
Brennwert	H _S	Kilowattstunden durch m³ oder kg	kWh/kg oder kWh/m³	
Heizwert	H_{I}	Kilowattstunden durch m³ oder kg	kWh/kg oder kWh/m³	
Leistung, mechanisch	P	Watt	W	$1W = 1\frac{N \cdot m}{s} = 1 J/s$
Wärmeleistung, Wärme- strom, Norm-Heizlast	Φ, ά	Watt	W	
Masse	m	Kilogramm	kg	1 t = 1000 kg
Massenstrom	m	Kilogramm durch Sekunde	kg/s	
Dichte	Q	Kilogramm durch Kubikmeter	kg/m³	$1 \text{ kg/dm}^3 = 1 \text{ g/cm}^3$
Kraft	F	Newton	N	$1 N = 1 kg \cdot m/s^2$
Druck	р	Pascal, Bar	Pa, bar	$1 Pa = 1 N/m^2$ $1 mbar \approx 1 cm WS$
Elektrische Stromstärke	I	Ampere	А	
Elektrische Spannung	U	Volt	V	
Elektrischer Widerstand	R	Ohm	Ω	1Ω = 1 V/A

1.2 Prozentrechnen

Grundwert

$$G_{\rm w} = \frac{P_{\rm w}}{P_{\rm s}} \cdot 100 \%$$

Prozentsatz


$$P_{\rm s} = \frac{P_{\rm w}}{G_{\rm w}} \cdot 100 \%$$

Prozentwert

$$P_{\rm w} = \frac{G_{\rm w} \cdot P_{\rm s}}{100 \, \%}$$

1.3 Längen

Teilung mit gleichen Abständen

l Teilungslänge

in m

in m

L Gesamtlänge

in m

b Randabstand

in m

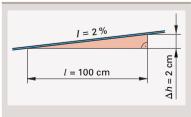
a Abstand

n Anzahl der Teilungspunkte

$$a = \frac{l}{n+1}$$

$$n = \frac{l}{a} - 1$$

Umrechnung von Längeneinheiten


1 m = 10 dm = 100 cm = 1 000 mm

0.1 m = 1 dm = 10 cm = 100 mm

 $0.01 \, \text{m} = 0.1 \, \text{dm} = 1 \, \text{cm} = 10 \, \text{mm}$

 $0.001 \, \text{m} = 0.01 \, \text{dm} = 0.1 \, \text{cm} = 1 \, \text{mm}$

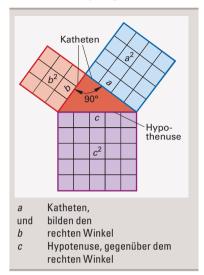
Steigung

I_r Relativsteigung

 $I_{\%}$ prozentuale Steigung in %

l Grundlänge

 Δh Höhenunterschied

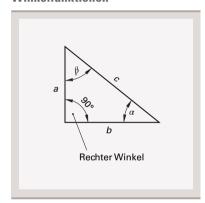

in m in m

$$I_{\rm r} = \frac{\Delta h}{l}$$

$$I_{\%} = \frac{\Delta h}{l} \cdot 100 \%$$

1.4 Lehrsatz des Pythagoras und Winkelfunktionen

Lehrsatz des Pythagoras



$$c^2 = a^2 + b^2$$

$$a^2 = c^2 - b^2$$

$$b^2 = c^2 - a^2$$

Winkelfunktionen

Cosinus =
$$\frac{Ankathete}{Hypotenuse}$$

Tangens =
$$\frac{\text{Gegenkathete}}{\text{Ankathete}}$$

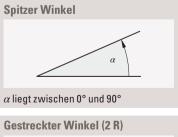
Cotangens =
$$\frac{Ankathete}{Gegenkathete}$$

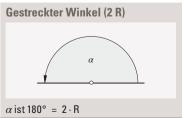
$$\sin \alpha = \frac{a}{c}$$

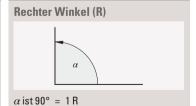
$$\sin \beta = \frac{b}{c}$$

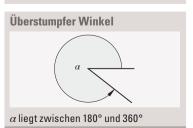
$$\cos \alpha = \frac{b}{c}$$

$$\cos \beta = \frac{a}{c}$$

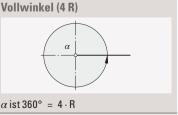

$$\tan \alpha = \frac{a}{b}$$

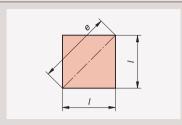

$$\tan \beta = \frac{5}{a}$$


$$\cot \alpha = \frac{b}{a}$$


$$\cot \beta = \frac{a}{b}$$


Winkelarten





1.5 Flächen

Quadrat

in m

in m

in m²

in m

in m

in m

in m

in m²

in m

in m

- Seitenlänge
- Eckenmaß
- Fläche
- Umfang

 $A = l^2$

 $l = \sqrt{A}$

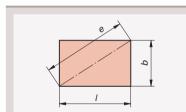
 $U = 4 \cdot l$

 $l = \frac{U}{4}$

 $e = \sqrt{2 \cdot l^2}$

 $l = \frac{e}{\sqrt{2}}$

Umrechnung von Flächeneinheiten


 $1 \text{ m}^2 = 100 \text{ dm}^2 = 10\,000 \text{ cm}^2 = 1\,000\,000 \text{ mm}^2$

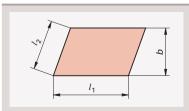
 $0.01 \text{ m}^2 = 1 \text{ dm}^2 = 100 \text{ cm}^2 = 10000 \text{ mm}^2$

 $0.0001 \text{ m}^2 = 0.01 \text{ dm}^2 = 1 \text{ cm}^2 = 100 \text{ mm}^2$

 $0,000\,001\,\mathrm{m}^2 = 0,0001\,\mathrm{dm}^2 = 0,01\,\mathrm{cm}^2 = 1\,\mathrm{mm}^2$

Rechteck

- Seitenlänge
- Breite
- Eckenmaß
- Fläche
- U Umfang

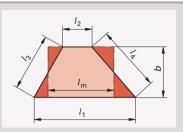

 $A = l \cdot b$

- $l = \frac{A}{b}$
- $b = \frac{A}{I}$

- $U = 2 \cdot (l + b)$
- $l = \frac{U}{2} b$
- $b = \frac{U}{2} l$

- $e = \sqrt{l^2 + b^2}$
- $l = \sqrt{e^2 b^2}$ $b = \sqrt{e^2 l^2}$

Rhomboid (Parallelogramm)


- Seitenlänge

- Breite in m Fläche in m² **U** Umfang in m

- $A = l_1 \cdot b$
- $l_1 = \frac{A}{b}$
- $b = \frac{A}{l_1}$

- $U = 2 \cdot (l_1 + l_2)$
- $l_1 = \frac{U}{2} l_2$ $l_2 = \frac{U}{2} l_1$

Trapez

in m

in m

in m

in m

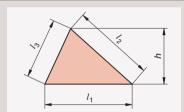
in m²

in m

- l_1 große Länge
- l₂ kleine Länge
- $l_{\rm m}$ mittlere Länge
- b Breite
- A Fläche
- **U** Umfang

- $A = \frac{l_1 + l_2}{2} \cdot b$
- $b = \frac{2 \cdot A}{l_1 + l_2} \qquad l_1 = \frac{2 \cdot A}{b} l_2$

$$l_2 = \frac{2 \cdot A}{b} - l_1$$

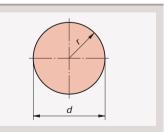

 $l_{\rm m} = \frac{l_1 + l_2}{2}$

- $l_1 = 2 \cdot l_m l_2$
- $l_2 = 2 \cdot l_{\rm m} l_1$

- $A = l_{\rm m} \cdot b$
- $b = \frac{A}{l_{\rm m}} \qquad l_{\rm m} = \frac{A}{b}$

$$U = l_1 + l_2 + l_3 + l_4$$

Dreieck


- Seitenlänge
- h Höhe
- A Fläche
- **U** Umfang

- $l_1 = \frac{2 \cdot A}{h} \qquad h = \frac{2 \cdot A}{l_1}$
- $U = l_1 + l_2 + l_3$

 $A = \frac{l_1 \cdot h}{2}$

- $l_1 = U (l_2 + l_3)$
- $l_2 = U (l_1 + l_3)$
- $l_3 = U (l_1 + l_2)$

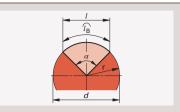
Kreis

- d Durchmesser
- Radius
- **U** Umfang
- A Fläche
- in m in m

in m

in m

in m²


in m

- in m
 - in m²

- $A = \frac{\pi \cdot d^2}{4}$
 - $A = \pi \cdot r^2$
- $A = d^2 \cdot 0.785$
 - $U = \pi \cdot d$

- $d=\sqrt{\frac{4\cdot A}{\pi}}$
 - $r = \sqrt{\frac{A}{\pi}}$
- $d = \sqrt{\frac{A}{0,785}}$
 - $d = \frac{U}{\pi}$

Kreisausschnitt

in m

in m

in m

in m^2 in °

in m

in m

in m

in m² in °

in m

in m

in m

in m

in m in m²

in m

in m

in m

in m²

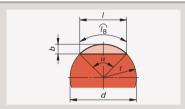
Durchmesser

Radius

Sehnenlänge

Fläche

Mittelpunktswinkel


 $A = \frac{d^2 \cdot 0,785 \cdot \alpha}{360^{\circ}}$

$$l_{\rm B} = \frac{\pi \cdot r \cdot \alpha}{180^{\circ}}$$

$$r = \frac{l_{\rm B}}{\pi} \cdot \frac{180^{\circ}}{\alpha}$$

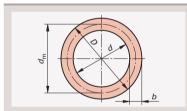
$$\alpha = \frac{l_{\rm B}}{\pi \cdot r} \cdot 180^{\circ}$$

Kreisabschnitt

Sehnenlänge

Durchmesser

Breite


Fläche

Mittelpunktswinkel

 $A = \frac{2 \cdot l \cdot b}{3}$

$$b = \frac{d \cdot \pi \cdot \alpha}{360^{\circ}}$$

Kreisring

D Außendurchmesser

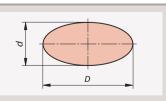
d Innendurchmesser

 $d_{\rm m}$ mittlerer Durchmesser

Breite

Umfang

A Fläche


 $A = 0.785 \cdot (D^2 - d^2)$

$$U = \pi \cdot (D + d)$$

$$D = \frac{U}{\pi} - d$$

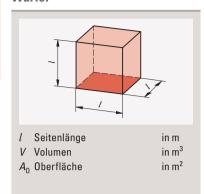
$$d = \frac{U}{\pi} - D$$

Ellipse

D Länge

Breite U Umfang A Fläche

 $A = D \cdot d \cdot 0,785$


$$U=\pi\cdot\frac{D+d}{2}$$

$$D = \frac{2 \cdot U}{\pi} - d$$

$$d = \frac{2 \cdot U}{\pi} - D$$

1.6 Volumen

Würfel

$$V = l^3$$

$$l = \sqrt[3]{V}$$

$$A_0 = 6 \cdot l^2$$

$$l = \sqrt{\frac{A_0}{6}}$$

Umrechnung von Volumeneinheiten

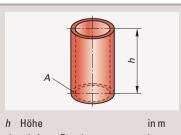
$$1 \text{ m}^3 = 1000 \text{ dm}^3 = 1000 000 \text{ cm}^3$$

$$0.001 \text{ m}^3 = 1 \text{ dm}^3 = 1000 \text{ cm}^3 = 10000000 \text{ mm}^3$$

$$0,000\,001\,\mathrm{m}^3 = 0,001\,\mathrm{dm}^3 = 1\,\mathrm{cm}^3 = 1000\,\mathrm{mm}^3$$

$$0.000\ 001\ dm^3 = 0.001\ cm^3 = 1\ mm^3$$

Prismatische und zylindrische Körper



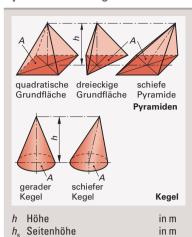
$$V = A \cdot h$$

$$A = \frac{V}{h}$$

$$A = \frac{V}{h} \qquad \qquad h = \frac{V}{A}$$

Hohlzylinder

- d_m mittlerer Durchmesser in m D äußerer Durchmesser in m
- innerer Durchmesser in m
- Wandstärke in m Fläche in m²
- V Volumen in m³


$$A = d_{\rm m} \cdot \pi \cdot s$$

$$d_{\rm m} = \frac{D}{}$$

$$d_{\rm m} = \frac{D+d}{2} \qquad s = \frac{D-d}{2}$$

$$A = D^2 \cdot 0,785 - d^2 \cdot 0,785$$
$$A = (D^2 - d^2) \cdot 0,785$$

Pyramiden und Kegel

in m²

in m²

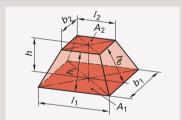
in m^3

$$V = \frac{A \cdot h}{3}$$

$$A = \frac{3 \cdot V}{h}$$

$$h = \frac{3 \cdot V}{A}$$

$$A_{\rm m} = \frac{d \cdot \pi \cdot h_{\rm s}}{2}$$

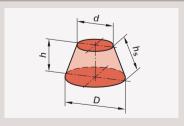

$$h_{\rm s} = \sqrt{h^2 + r^2}$$

Pyramidenstumpf

 $A_{\rm m}$ Kegelmantelfläche

Fläche

Volumen

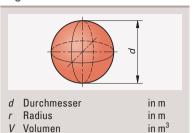

1. 1.	Seitenlängen	in m
	Breiten	in m
h	Höhe	in m
h_{k}, h_{k}	Mantelhöhen	in m
<i>V</i>	Volumen	in m ³
A_1	Grundfläche	in m ²
A_2		in m ²
$A_{\rm M}$	Mantelfläche	in m ²

$$V = \frac{h}{3} \cdot (A_1 + A_2 + \sqrt{A_1 \cdot A_2})$$

$$h = \frac{3 \cdot V}{A_1 + A_2 + \sqrt{A_1 \cdot A_2}}$$

$$A_{\mathsf{M}} \, = \, (l_1 + l_2) \cdot h_{\mathsf{l}} + (b_1 + b_2) \cdot h_{\mathsf{b}}$$

Kegelstumpf



$$\begin{array}{cccc} D & \text{großer Durchmesser} & & \text{in m} \\ d & \text{kleiner Durchmesser} & & \text{in m} \\ h & \text{H\"{o}he} & & \text{in m} \\ h_{\text{S}} & \text{Mantelh\"{o}he} & & \text{in m} \\ V & \text{Volumen} & & \text{in m}^3 \\ A_{\text{M}} & \text{Mantelf\"{l\"{a}}\'{c}he} & & \text{in m}^2 \\ \end{array}$$

$$V = \frac{\pi \cdot h}{12} \cdot (D^2 + d^2 + D \cdot d)$$

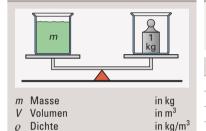
$$A_{\mathsf{M}} = \frac{\pi \cdot h_{\mathsf{S}}}{2} \cdot (D + d)$$

Kugel

$$V = \frac{\pi \cdot d^3}{6}$$

$$d = \sqrt[3]{\frac{6 \cdot V}{\pi}}$$

$$A_{\rm O} = \pi \cdot d^2$$


$$d = \sqrt{\frac{A_0}{\pi}}$$

1.7 Masse, Dichte und Volumen

in m²

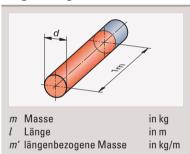
Masse

An Oberfläche

$$m = V \cdot \varrho$$

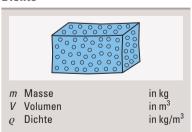
$$V=\frac{m}{\varrho}$$

Umrechnung von Masseeinheiten


$$1 t = 1000 kg = 1000000 g$$

$$0,001 t = 1 kg = 1000 g = 1000 000 mg$$

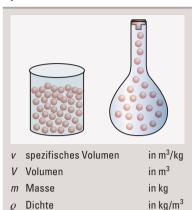
$$0,000\,001\,t\,=\,0,001\,kg\,=\,\mathbf{1}\,\mathbf{g}\,=\,1000\,mg$$


 $0,000\,001\,\mathrm{kg}\,=\,0,001\,\mathrm{g}\,=\,1\,\mathrm{mg}$

Längenbezogene Masse

$$m = m' \cdot l$$

Dichte

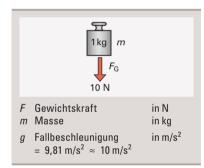


$$\varrho = \frac{m}{V}$$

Umrechnung von Dichteeinheiten							
1 t/m ³	=	1000 kg/m ³	=	1 kg/dm ³			
0,001 t/m ³	=			1 kg/dm³			
1 kg/dm ³	=	1000 g/dm ³	=	1000 kg/m ³			
1 kg/dm ³	=	1 g/cm ³					

Tabelle 1: Dichten fester und flüssiger Stoffe								
Stoff	Zustand	ϱ in kg/dm ³	Stoff	Zustand	ϱ in kg/dm ³			
Aluminium	S	2,70	Benzin	I	0,68 bis 0,75			
Blei	s	11,34	Butan (flüssig)	1	0,57			
Eis	s	0,88 bis 0,92	Heizöl	1	0,84			
Gold	s	1	Propan (flüssig)	1	0,51			
Kupfer	s	8,93	Quecksilber	1	13,55			
Stahl	s	7,85	Wasser bei	1	1,00			
Zink	s	7,15	+4 °C					
s feste Stoffe, I flüssige Stoffe								

Spezifisches Volumen


		V
V	=	m
		m

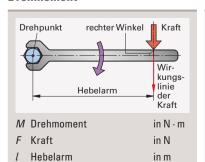
$$m = \frac{V}{V}$$

$$v = \frac{1}{\varrho}$$

Substanz	Dichte (kg/m³)	Bestimmtes (m³/kg)	Substanz	Dichte (kg/m³)	Bestimmtes (m³/kg)
Luft	1,225	0,78	Kohlendioxid	1,977	0,506
Eis	916,7	0,00109	Chlor	2,994	0,334
Wasser (flüssig)	1000	0,00100	Wasserstoff	0,0899	11,12
Salzwasser	1030	0,00097	Methan	0,717	1,39
Quecksilber	13546	0,00007	Stickstoff	1,25	0,799
R-22	3,66	0,273	Dampf	0,804	1,24
Ammoniak	0,769	1,30			

1.8 Gewichtskraft

$$F_{G} = m \cdot g$$


$$m = \frac{F_{\rm G}}{g}$$

$$1\frac{kg \cdot m}{s^2} = 1 N$$

Umrechnung von Kräfteeinheiten						
1 MN	= 1000 kN =			1 000 000 N		
0,001 MN	=	1 kN	=	1000 N		
0,000 001 MN	=	0,001 kN	=	1 N		

1.9 Drehmoment und Hebel

Drehmoment

$$M = F \cdot l$$

$$F = \frac{M}{l}$$

$$l = \frac{M}{F}$$