Ρ

89

Ρ

→ risk parameter used in risk graphs (→ risk graph) und referred to as → P1 and → P2, it describes the possibility to avoid the consequences of dangerous failures. DIN IEC 61511-3 (VDE 0810):2004

P1

one of the specifications of the \rightarrow risk parameter P used in risk graphs (\rightarrow risk graph) describing that it is possible under certain conditions to avoid the consequences of dangerous events.

DIN IEC 61511-3 (VDE 0810):2004

P2

one of the specifications of the \rightarrow risk parameter P used in risk graphs (\rightarrow risk graph) describing that it is almost impossible to avoid the consequences of dangerous events.

DIN IEC 61511-3 (VDE 0810):2004

parallel system

Figure 19 represents the reliability block diagram for a parallel system.

Figure 19: Parallel System

A parallel system has completely failed if all components failed. The \rightarrow *life time T* of

a parallel system is equal to that of the component operating for the longest period and is expressed by:

$$T = T_{(n)} = \max(T_1, T_2, ..., T_n).$$

The probability distribution $T_{(n)}$ can be determined by:

$$P\left\{T_{(n)} \le t\right\} = \Phi_n(t) = F_1(t) \cdot F_2(t) \cdot \dots \cdot F_n(t)$$

The \rightarrow *reliability function* of a parallel system with *n* components can be calculated as follows:

$$R_r(t) = 1 - \prod_{i=1}^n [1 - F_i(t)]$$

VDI 4009-5:1985-02

Additional important parameters in connection with a parallel system are: \rightarrow *reliability function, for a parallel system* and \rightarrow *mean time to failure, parallel system,* to compare with \rightarrow *series system*

parameter

variable or \rightarrow statistic

• ~ of stochastics pertaining to the probability distribution.

VDI 4001-2:2006-07

• *application-related* ~ refers to the survival for the (individual) application such as the application failure rate or application reliability.

VDI 4004-2:1986-08

• operation-related ~ designates the survival for the \rightarrow operating time (duration) such as the operating failure rate or \rightarrow operational reliability.

VDI 4004-2:1986-08

 standby-related ~ refers to the survival under standby or reserve conditions such as standby failure rate, standby reliability.
VDI 4004-2:1986-08

• storage-related/non-operation-related ~ refers to the survival under storage conditions or non-operational conditions such as \rightarrow storage failure rate, \rightarrow storage reliability.

VDI 4004-2:1986-08

partial risk

the overall risk *R* can be expressed as the sum of the partial risks R_a and these as the product of H_a and S_a :

$$R = \sum_{a} R(a) = \sum_{a} H(a) \cdot S(a),$$

where *a* is an index identifying one of the *n* possible risk events, H(a) is the frequency of a risk event and S(a) is the expected \rightarrow *harm*.

VDI/VDE 3542-2:2000

See also $\rightarrow risk$

parts count method

simple procedure for determining the $MTTF_d$ for each channel or module and consisting in adding the individual $MTTF_d$ values of all components which are part of that \rightarrow module or \rightarrow channel. The general formula is:

$$\frac{1}{MTTF_d} = \sum_{i=1}^{N} \frac{1}{MTTF_{di}} = \sum_{j=1}^{N} \frac{n_j}{MTTF_{dj}}$$

where $MTTF_d$ refers to the complete channel or module and $MTTF_{di}$, $MTTF_{dj}$ are the values for each component contributing to the \rightarrow *safety function*. Both sums are equivalent, but the first is over each component separately and the second has all n_j components with identical $MTTF_{dj}$ grouped together. DIN EN ISO 13849-1:2007-07

PC

paired comparison

PCS

process control system (\rightarrow process control engineering). The following faults and parameters are typical for a PCS:

- active faults \rightarrow fault, active

- common-cause failures \rightarrow failure, common cause; \rightarrow common cause failure

– common-mode failures \rightarrow *failure, common mode*

- down time \rightarrow down time

- failure rate \rightarrow failure rate
- failures \rightarrow failure
- faults \rightarrow fault.
- fault avoidance \rightarrow fault avoidance
- fault containment \rightarrow fault containment
- fault detection time \rightarrow fault detection, time
- systematic faults \rightarrow fault, systematic
- passive faults \rightarrow fault, passive
- proof test \rightarrow proof test
- proof test interval \rightarrow proof test interval;
- \rightarrow T1, \rightarrow test interval calculation
- proven-in-use → proven-in-use
- random faults \rightarrow fault, random
- self-signalling faults \rightarrow fault, self-signalling
- software faults \rightarrow fault, software
- time between failures \rightarrow time between failures

PDCA

plan-do-check-act is a four-step problemsolving process used in business process improvement.

PDS

pre-developed software.

PE

 \rightarrow programmable electronics

peak voltage

• *recurring* ~ peak value of a generated voltage that recurs in given intervals

performance capacity

the physical and mental state of human beings including their individual disposition and motivation to complete a task. VDI 4006-1:2002-11

performance level

specifies the probability of a dangerous failure per hour and describes the capability of a (safety-related) system to perform a safety function under given conditions. The performance level is divided into five categories (levels) such as depicted in Figure 20. DIN EN ISO 13849-1:2007-07

Performance Level	Average probability of a dangerous failure per hour
а	$\geq 10^{-5}$ to $< 10^{-4}$
b	$\ge 3 \cdot 10^{-6}$ to $< 10^{-5}$
с	$\geq 10^{-6} \ \ {\rm to} \ \ < 3\cdot 10^{-6}$
d	$\geq 10^{-7}$ to < 10^{-6}
e	$\ge 10^{-8}$ to $< 10^{-7}$
In addition to the average probability of a dangerous failure, further measures are required to achieve a PL.	

Figure 20: Performance Levels

permanent installation

 \rightarrow installation, permanent

PES

 \rightarrow programmable electronic system, \rightarrow E/ E/PES

PFD

 \rightarrow probability of failure on demand

PFDavg determination

if limit values are exceeded, messages or alarms can be blocked by passive faults. In accordance with VDI/VDE 2180-4:2007-04, only dangerous undetected faults λ_{DU} must be taken into account. In most cases, the formulas specified below are sufficient. VDI/VDE 2180-4:2007-04 recommends the following pragmatic approach for calculating the PFD_{avg}: input (sensors), logic solver (processing) and output (actuators) are considered separately. First, each individual component among the sensors is defined, then each λ_{DU} and T_i is calculated to determine the individual PFD values. After this step, the PFD value for all the sensors is calculated by adding the individual PDF values:

$$PFD_S = \sum PFD_{S_i}$$

Proceed in the same way to calculate the actuators such that the PFD value for the actuators results from:

$$PFD_{FE} = \sum PFD_{FE_i}$$

The type of logic solver must be defined to be able to calculate λ_{DU} and T_i , and then to determine the PFD_L value (see $\rightarrow PFD_{avg}$, *approximation formulas*). Finally, the PFD_{avg} value of the safety-related system can be determined by adding the individual PFD values.

$$PFD_{avg} = PFD_S + PFD_L + PFD_{FE}$$

As an alternative, the PFD_{avg} can also be determined using the safety-related availability (\rightarrow availability, safety-related) for a system V_S .

$$PFD_{avg} = 1 - V_S$$

VDI/VDE 2180-4:2007-04

– approximation formulas the following formulas are based on DIN EN 61508-6 (VDE 0803):2001 and can be used for estimating the PFD_{avg} values of various systems.

$$\begin{aligned} PFD_{1001} &\approx \frac{1}{2} \lambda_{DU} T_{I} \\ PFD_{1002} &\approx \frac{\lambda_{DU}^{2} T_{I}^{2}}{3} + \beta \cdot \frac{1}{2} \lambda_{DU} T_{I} \\ PFD_{1003} &\approx \frac{\lambda_{DU}^{3} T_{I}^{3}}{4} + \beta \cdot \frac{1}{2} \lambda_{DU} T_{I} \\ PFD_{1004} &\approx \frac{\lambda_{DU}^{4} T_{I}^{4}}{5} + \beta \cdot \frac{1}{2} \lambda_{DU} T_{I} \\ PFD_{2002} &\approx \lambda_{DU} T_{I} \\ PFD_{2003} &\approx \lambda_{DU}^{2} T_{I}^{2} + \beta \cdot \frac{1}{2} \lambda_{DU} T_{I} \\ PFD_{2004} &\approx \lambda_{DU}^{3} T_{I}^{3} + \beta \cdot \frac{1}{2} \lambda_{DU} T_{I} \end{aligned}$$

 β refers to the portion of failures simultaneously affecting multiple channels (\rightarrow *failure, common cause*)

Usually, when common cause failures are examined, the failures with independent