
4  Medical software – from the idea to the finished product

82

4.2.2	 Usability

Intended purpose,
Market

requirements

Speci�cation of the
overall system

SW requirements
speci�cation

Risk analysis and m
easures

Im
pl

em
en

ta
tio

n 
an

d 
ve

ri
�c

at
io

n 
ri

sk
 m

ea
su

re
s

Ve
ri

�c
at

io
n/

Va
lid

at
io

n 
of

 u
sa

bi
lit

y
U

sability

SW design
speci�cation

Software design
& integration
veri�cation

Subsystem
veri�cation

Code review,
static code analysisImplementation

Validation

System
veri�cation

Software
veri�cation

SW architecture/
speci�cation of SW

components

U
sability

Figure 4.3  Verification/validation of the usability, SW = software

Applying usability includes not only specification and design activities (left side of 
the V-model) but also verification/validation activities (right side of the V-model).

Motivation

In general, it is essential to involve the users and their needs as early as possible 
to develop the right product. Therefore, good usability will directly affect user 
satisfaction and the economic success of the product in the market.

In medical practice, monitoring and treatment of patients increasingly relies on 
medical devices. User errors arising from the insufficient usability of electri-
cal medical devices are a frequent source of risks for patients and users. Thus, 
usability is closely related to risk management and designed to minimize user 
errors and risks stemming from use. Some, but not all, types of misuse can be 
controlled this way.



Development of Medical Software

83

Apart from the primary objective of implementing the safety-relevant requirements 
in the design, there is also the potential, based on usability testing, to come up 
with alternative solutions for training and process design.

Philosophy of User Interface Design

One suitable approach to the design of interactive products is the User Centered 
Design methodology according to DIN ISO 9241-210, which represents a struc-
tured iterative procedure for designing user interfaces. All activities are centered 
around the users with their goals, needs and characteristics.

Plan the process

Specify the user
requirements +

Establish the
Usability

Engineering
File

according to
EN 62366-1

Application of
Usability

Engineering to
Medical Devices

Evaluate
the solution

Design solution
ful�lls the
requirements

Understand the
context of use

Recognize all risks
and the most

important task

Iterate where
needed

Create
Design solutions

Figure 4.4  User Centered Design Process

After planning the complete process, the latter is implemented via several detailing 
loops. Which of the several techniques for determining the usability will be used 
depends on the need and detailing level.

Understanding the context of usage:

•• Interviews, use of questionnaires, checklists
•• Observation/support of the users in the future application environment
•• Personas methodology
•• Analysis of competitive and related products

Specification of the user requirements:

•• Use Cases
•• Scenarios
•• UI specifications



4  Medical software – from the idea to the finished product

84

Creating design solutions

•• Paper drafts
•• Wireframes
•• Software click-prototypes

Evaluating the solution

•• Formative user tests of prototypes at various levels of maturity through expert
reviews, usability walk-throughs, user tests, field tests

•• Validation of the medical device in user tests, field tests, clinical trials

From User Needs to Visual Design

James Jesse Garret defined the elements and levels of user experience. These are 
illustrated in the following figure.

tim
e

Concrete Completion

Site Objectives

Visual Design

Information Design

User Needs

Interaction

Interface Design Navigation Design

Information
Design

ContentFunctional
RequirementsSpeci�cations

Architecture

Abstract Conception

Figure 4.5  Elements of user experience according to James Jesse Garret (source: www.jjg.net/ia)

http://www.jjg.net/ia


Development of Medical Software

85

Unified operation of one or more interactive products is achieved primarily through 
consistency in the three upper elements of the user experience.

•• Design of the interaction and information architecture: This level requires 
consistent application of the user interface patterns and rules of interaction. 
These are laid down in style guides to ensure a consistent application.

•• Information Design: Consistent presentation and arrangement of uniform 
information, infographics, navigation elements and other recurrent elements is 
important. Uniform information should always be depicted in identical mode 
of presentation and interaction.

•• Visual design of the user interface: A unified look and feel of all features 
belonging to the product and the user interfaces of a product family ensures 
a high degree of recognition with the user.

Usability file

The usability engineering results must be documented in the usability file. Type 
and scope of the usability engineering may vary, depending on the type of medical 
device, and should be adapted based on safety. The records and other documents, 
which together constitute the usability file, may become part of other documents 
and files, e.g., the product master file of the marketing authorization holder or 
the safety management file.



4  Medical software – from the idea to the finished product

86

4.2.3	 System architecture/specification of the software 
components

Intended purpose,
Market

requirements

Speci�cation of the
overall system

SW requirements
speci�cation

Risk analysis and m
easures

Im
pl

em
en

ta
tio

n 
an

d 
ve

ri
�c

at
io

n 
ri

sk
 m

ea
su

re
s

Ve
ri

�c
at

io
n/

Va
lid

at
io

n 
of

 u
sa

bi
lit

y
U

sability

SW design
speci�cation

Software design
& integration
veri�cation

Subsystem
veri�cation

Code review,
static code analysisImplementation

Validation

System
veri�cation

Software
veri�cation

SW architecture/
speci�cation of SW

components

U
sability

Figure 4.6  System architecture and specification of the components, SW = software

Methodology

Development of the system architecture relies on an iterative/incremental method
ology. After having created an initial draft version of the system architecture, the 
former is updated and upgraded with continuous findings and activities in the areas 
of requirement management and software design. However, the goal is to create 
and release a stable first version of the system architecture early in the project.

When creating the software architecture (in this section used synonymously with 
system architecture) it is important to identify the drivers of the architecture. 
These are requirements from various areas with a particularly large impact on the 
software architecture. This does not just include the non-functional requirements 
(e.g., performance, testability, usability, and technical feasibility). Based on these 



Development of Medical Software

87

requirements, the software architecture is created, assessed, and adapted, as well 
as extended through further iteration.

One important aspect of software architecture is the identification of software 
of unknown provenance (SOUP)/commercial-off-the-shelf (COTS) software and 
their integration into the architecture (also see section 4.3.4.1).

Software architecture and risk management

The risk management findings must become part of the software architecture early 
on. To this end, initial considerations of possible threats and causes should be ad-
dressed and with regard to the software architecture, strategic, conceptual or technical 
solutions should be developed and described in order to develop a safe medical 
device. At the software architecture levels, considerations and solutions for a safe 
medical device might be conceptual descriptions for the following areas of example:

•• Ensuring data integrity
•• Secure communication channels/protocols
•• Safeguarding of algorithms/calculations
•• Process control/monitoring

Description of the software architecture

The software documentation should provide an understandable summary of the 
software system. The 4+1 architectural view model by Philippe Kruchten is well 
suited for this.

Use Case View

Logical
View

Implementation
View

Deployment
View

Process
View

Figure 4.7  4+1 architectural view model according to Kruchten

The four views serve to look at the system from different perspectives and describe 
the viewpoints of different stakeholders.



4  Medical software – from the idea to the finished product

88

•• Logical view: In the Logical View the object model of the software is described 
with the focus on system functionality. Usually, this relies on Unified Modeling 
Language (UML) diagrams, e.g., class diagrams and communication diagrams.

•• Development view: In the Development View the static structure of the 
software is described from the viewpoint of the developer (e.g., layer, soft-
ware management, packages …) Usually, this relies on UML diagrams such as 
component diagrams and package diagrams.

•• Process view: The Process View is concerned with the dynamic aspects of 
the system, such as states and transitions, synchronization, flow of message 
sequences, concurrency, scheduling or real-time constraints. Usually, this 
relies on UML diagrams, e.g., state chart diagrams, sequence diagrams and 
activity diagrams.

•• Physical view: The Physical View, also known as Deployment View, describes 
the deployment of the software on various hardware components and the 
communication between these components. Usually, this relies on the UML 
deployment diagram.

•• Use Case view: The Use Case View describes the functional requirements of 
the system (here as use cases). In the present case, this view has already been 
described by the documentation of the software requirements specification.

Apart from these views it helps to expand the architecture documentation with a 
chapter on decisions. Especially in fundamental/critical decisions it is quite helpful 
to describe not only the chosen solution, but also the alternatives considered during 
the decision-making process, and to also document the reasons for the decision.

Regulatory aspects

From the regulatory point of view the software architecture must address the 
following issues:

•• The architecture must meet the software requirements.
•• The architecture must describe the software components and the interfaces 

between them.
•• The SOUP/COTS components must be identified and specified, including 

the performance requirements as well as the requirements for hardware and 
software.

•• The documentation must describe the impact of risk management measures 
on the software architecture.



Development of Medical Software

89

4.2.4	 Detailed software design

Intended purpose,
Market

requirements

Speci�cation of the
overall system

SW requirements
speci�cation

Risk analysis and m
easures

Im
pl

em
en

ta
tio

n 
an

d 
ve

ri
�c

at
io

n 
ri

sk
 m

ea
su

re
s

Ve
ri

�c
at

io
n/

Va
lid

at
io

n 
of

 u
sa

bi
lit

y
U

sability

SW design
speci�cation

Software design
& integration
veri�cation

Subsystem
veri�cation

Code review,
static code analysisImplementation

Validation

System
veri�cation

Software
veri�cation

SW architecture/
speci�cation of SW

components

U
sability

Figure 4.8  Detailed software design, SW = software

Depending on the safety classification of the software, a detailed design could/
should subdivide the software further.

The IEC 62304-1 standard suggests the following differentiation for system 
steps from large to small “system → component → unit”, with the proviso that 
the manufacturer decides on how the subdivision will be used.
It should be remembered that, due to certain reasons to be clarified by the man-
ufacturer, the latter may decide not to further subdivide special software systems. 
However, in the high-security software class (C) forgoing a detailed design will 
be hard to argue because the detailed design clearly defines internal relationships 
and supports detailed testing.

Provided that the software system has been detailed down to the level of the 
software unit, a detailed design must be documented for the appropriate unit 
to support the implementation (and also the testing in terms of the validation).



4  Medical software – from the idea to the finished product

90

Particular attention should be paid to the unit interfaces. These considerations 
should include interfaces to other units as well as hardware interfaces.

Verification of the detailed design

Like all specifications, the detailed design of the units must be subjected to ver-
ification (along the lines of a review).

As part of such a verification it should be ensured that

•• the detailed design implements the software architecture (described above) and
•• that there are no conflicts with the software architecture.

The execution of this verification and its results must be documented.

4.2.5	 Implementation

Intended purpose,
Market

requirements

Speci�cation of the
overall system

SW requirements
speci�cation

Risk analysis and m
easures

Im
pl

em
en

ta
tio

n 
an

d 
ve

ri
�c

at
io

n 
ri

sk
 m

ea
su

re
s

Ve
ri

�c
at

io
n/

Va
lid

at
io

n 
of

 u
sa

bi
lit

y
U

sability

SW design
speci�cation

Software design
& integration
veri�cation

Subsystem
veri�cation

Code review,
static code analysisImplementation

Validation

System
veri�cation

Software
veri�cation

SW architecture/
speci�cation of SW

components

U
sability

Figure 4.9  Software implementation, SW = software



Development of Medical Software

91

The software must evidently be implemented irrespective of the safety classifica-
tion selected for the software. The implementation step represents the transition 
from the “paper world” (corresponding with the left side of the V-model) to the 
real product (right side).

However, there are some provisions which should be noted.

If the detailed design has subdivided the software system into units, these will 
have to be verified (along the lines of testing) as part of the implementation.

Note: The verification workflow and the various approaches to testing are de-
scribed in section 4.2.7.

At this point the different focus of each test approach should be emphasized:

•• In unit testing the goal is to prove that the implemented code is working, e.g., 
that a described algorithm delivers the expected result.

•• In system testing the goal is to prove that the software system fulfills the 
requirements. This goes beyond unit testing, which only deals with a small 
part of the functionalities but tests these rather intensely.



4  Medical software – from the idea to the finished product

92

4.2.6	 Risk management

Intended purpose,
Market

requirements

Speci�cation of the
overall system

SW requirements
speci�cation

Risk analysis and m
easures

Im
pl

em
en

ta
tio

n 
an

d 
ve

ri
�c

at
io

n 
ri

sk
 m

ea
su

re
s

Ve
ri

�c
at

io
n/

Va
lid

at
io

n 
of

 u
sa

bi
lit

y
U

sability

SW design
speci�cation

Software design
& integration
veri�cation

Subsystem
veri�cation

Code review,
static code analysisImplementation

Validation

System
veri�cation

Software
veri�cation

SW architecture/
speci�cation of SW

components

U
sability

Figure 4.10  Risk management, SW = software

Risk management includes activities in the areas of specification and design 
(left side of the V-model), as well as in verification/validation (right side of the 
V-model).

4.2.6.1	 General

The risk management system described here is based on the European standard EN 
ISO 14971. This standard EN ISO 14971 specifies the area of application as follows:

“This international standard specifies a process for a manufacturer to identify 
the hazards associated with medical devices, including in vitro diagnostic (IVD) 
medical devices, to estimate and evaluate the associated risks, to control these 
risks, and to monitor the effectiveness of the controls […].”

It identifies several areas of application for risk management. Before activities 
are carried out, the focus to be looked at must be clearly defined.




