18

7D ELEKTRISCHE LEISTUNG (3. TEIL)

$$P_2 = \frac{P_1 \cdot (U_2)^2}{(U_1)^2}; P_2 = \frac{P_1 \cdot (I_2)^2}{(I_1)^2}$$

Nr. Aufgabe

7.41

Nennquerschnitt in mm² (Cu)	Nennstrom Überstrom- schutzeinrichtung	Leistung P in W bei I _N 75%	Leistung P in W bei I _N 100%
1.5	10	45.9	81.7
1.5 / 2.5	13	77.6 / 46.6	138 / 82.8
1.5 / 2.5 / 4.0	16	117.6 / 70.6 / 44.1	209 / 125.4 / 78.4
1.5 / 2.5 / 4.0 / 6.0	20	183.8 / 110.3 / 68.9 / 45.9	326.7 / 196 / 122.5 / 81.7
2.5 / 4.0 / 6.0	25	172.3 / 107.7 / 71.8	306.3 / 191.4 / 127.6
4.0 / 6.0	32	176.4 / 117.6	313.6 / 209.1

7.42

b)
$$P_2 = 112.36W$$

7.43

b) $U_2 = 205.14V$

c) $U_2 = 240.98V$

d) $U_2 = 249.92V$

7.44

Normspannung in V	maximaler Widerstand in Ω	Leistung bei 10% Überspannung in W	Leistung bei 10% Unterspannung in W
230V	46	1'391.5	931.5
230V		1'600.2	1'071.22
230V	34	1'882.6	1'260.26
230V		2'133.6	1'428.30
230V	20	3'200.45	2'142.45

- 7.45 Die Leistung sinkt um 75%.
- 7.46 Die Spannung muss um 41.42% erhöht werden.
- 7.47 Der elektrische Strom nimmt zu und damit auch die Leistung. Durch eine zu grosse Leistungsaufnahme wird das Gerät zerstört.
 - $-P_2 = 6654W$
 - Die Leistung ist beim Anschluss an 400V 3 mal grösser als beim Anschluss an 230V.
- 7.48 $_{\Delta}$ P% = 9.3% (Rundungsdifferenzen beachten)
- **7.49** $U_2 = 210.8V$

7.50 Unterspannung:

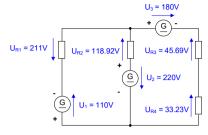
Bei konstantem Widerstand sinkt die Stromstärke. Durch die sinkende Stromstärke erhöht sich die Auslösezeit. Je später die Überstromschutzeinrichtung anspricht, desto länger bleibt die gefährliche Situation bestehen.

Überspannung:

Bei konstantem Widerstand steigt die Stromstärke. Durch die steigende Stromstärke reduziert sich die Auslösezeit. Je schneller die Überstromschutzeinrichtung anspricht, desto ungefährlicher ist die Situation.

Achtung: Die oben erwähnten Überlegungen beziehen sich auf einen konstanten Netzwiderstand. In einem Elektrizitätsnetz kommen jedoch auch Widerstände vor, die nicht konstant bleiben.

32 NETZWERKE (ÜBERLAGERUNGSMETHODE)


Nr. Aufgabe

32.1 a) Teilstrom I₁ = 14.067A

Teilstrom $I_2 = 9.91A$ Teilstrom $I_3 = 4.154A$

b) $U_{R1} = 211V$, $U_{R2} = 118.92V$

U_{R3} = 45.694V, U_{R4} = 33.23V

c) Maschensatz für $U_1 = 110V - 211V - 118.92V + 220V = 0V$

Maschensatz für $U_2 = 220V - 118.92V - 180V + 45.7V + 33.23V = 0V$

Maschensatz für $U_3 = 180V + 118.92V - 220V - 33.23V - 45.7V =$ **0V**

32.2 a) Teilstrom
$$I_{12} = 2.963A$$

Teilstrom I₃ = 9.925A ←

$$U_{R2} = 5.926V$$

Teilstrom $I_{45} = 12.9A$ \longrightarrow $U_{R3} = 29.775V$

 $U_{R4} = 64.5V$

 $U_{R5} = 25.8V$

c) Alle Akkumulatoren werden entladen, weil sie als Spannungsquelle im Stromkreis liegen. Strom- und Spannungspfeil sind bei allen Akkumulatoren entgegengesetzt gerichtet.

32.3 a) Teilstrom I₁₂ = 1.908A

Teilstrom I₃ = 0.909A

Teilstrom $I_4 = 2.814A$

b) $U_{R1} = 19.08V$

 $U_{R2} = 38.16V$

 $U_{R3} = 27.27V$

 $U_{R4} = 112.56V$

c) Alle Akkumulatoren wirken als Spannungsquelle und geben elektrische Energie ab. Die Richtung der Strom- und Spannungspfeile sind jeweils entgegengesetzt.

32.4

a) Teilstrom $I_1 = 0.534A$

b) $U_{R1} = 8.01V$

Teilstrom I₂ = 6.934A ←

 $U_{R2} = 104.1V$

Teilstrom I₃₄ = 7.467A —

 $U_{R3} = 89.604V$

 $U_{R4} = 134.4V$

c) Weil alle Akkumulatoren als Spannungsquelle wirken, wird kein Akkumulator geladen. Strom- und Spannungspfeil sind jeweils entgegengesetzt gerichtet.

32.5

a) Teilstrom I₁ = 2.36A

b) $U_{R1} = 70.8V$

Teilstrom I₂₃ = 1.098A

U_{R2} = 27.45V

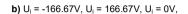
Teilstrom I₄ = 1.279A

 $U_{R3} = 21.96V$

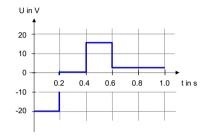
 $U_{R4} = 19.185V$

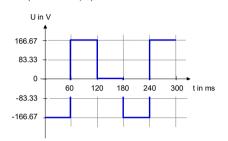
c) Nur U₂ wirkt im vorliegenden Stromkreis als Spannungsquelle, weil nur bei U₂ Strom- und Spannungspfeile entgegengesetzt gerichtet sind. U₁, U₃ und U₄ wirken wie Verbraucher. Die Richtung der Strom und Spannungspfeile stimmt überein.

63 ELEKTROMAGNETISCHE INDUKTION DURCH MAGNETFELDÄNDERUNG

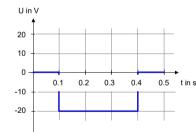

Nr. Aufgabe

63.1 U_i = -352V

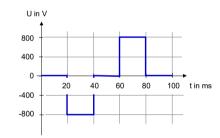

63.2 N = 15Wdg

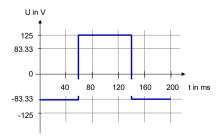

63.3 U_i = 44.21V

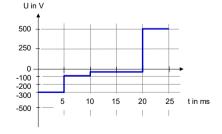
a) $U_i = -20V$, $U_i = 0V$, $U_i = 15V$, $U_i = 2.5V$



$$U_i = -166.67V$$
, $U_i = 166.67V$




c)
$$U_i = 0V$$
, $U_i = -20V$, $U_i = 0V$



e) $U_i = -83.33V$. $U_i = 125V$. $U_i = -83.33V$

b) $_{\Delta}\Phi$ = -334.545 μ Vs

f) $U_i = -300V$, $U_i = -100V$, $U_i = -50V$, $U_i = 500V$

- **63.5** a) $_{\Delta}B = -689.78 \text{mVs/m}^2$
- **63.6** $U_{i1} = -1'636.4V$, $U_{i2} = -818.2V$
- **63.7** $U_i = 7.5V$