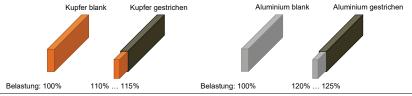

Mehr Informationen zum Titel

12.10 STROMBELASTBARKEIT VON STROMSCHIENENSYSTEMEN

Strombelastbarkeit von Stromschienensystemen

Stromschienen werden häufig für grössere Verteilungen vorgesehen, wo grosse Ströme fliessen. Sie können aus Kupfer oder Aluminium, blank oder gestrichen sein. Die Querschnitte der Schienen sollte so gewählt werden, dass sie bei Dauerbelastung eine max. Schienentemperatur von 65°C nicht überschreiten. Spannungsfall, Leistungs- und Energieverluste lassen sich dadurch minimieren. Zudem wird die Kurzschlussleistung kaum gedämpft und der Einhaltung der Netzqualität Rechnung getragen. Des Weiteren dient die beschriebene Querschnittwahl auch zur Vermeidung einer Brandgefahr, insbesondere an den Anschlussstellen, wo die Temperaturen i.d.R. höher sind als an den Schienen selbst.


Die nachfolgenden Tabellenwerte gelten für:

- ⇒ Stromschienen aus Kupfer mit Rechteckquerschnitt für Innenraumanlagen.
- ⇒ Umgebungstemperatur 35°C, Schienentemperatur 65°C.
- ⇒ Senkrechte Lage der Schienenbreite, lichter Schienenabstand entsprechend der Schienendicke.
- ⇒ Belastungswerte für Gleichstrom gelten auch für 16²/₃Hz Wechselstrom.

Abmessungen Querschnitt		eine Schiene			zwei Schienen					
in mm	in mm in mm²		blank		gestrichen		blank		gestrichen	
		=	~	=	~	=	~	=	~	
12 x 2	24	108A	108A	123A	123A	182A	182A	202A	202A	
15 x 2	30	128A	128A	148A	148A	212A	212A	240A	240A	
15 x 3	45	162A	162A	187A	187A	282A	282A	316A	316A	
20 x 3	60	204A	204A	237A	237A	348A	348A	394A	394A	
25 x 3	75	245A	245A	287A	287A	414A	412A	470A	470A	
30 x 5	150	380A	379A	448A	447A	676A	672A	766A	760A	
40 x 5	200	484A	482A	576A	573A	848A	836A	966A	952A	
50 x 5	250	588A	583A	703A	697A	1'020A	994A	1'170A	1'140A	
40 x 10	400	728A	715A	865A	850A	1'350A	1'290A	1'530A	1'470A	
50 x 10	500	875A	852A	1'050A	1'020A	1'610A	1'510A	1'830A	1'720A	
60 x 10	600	1'020A	985A	1'230A	1'180A	1'870A	1'720A	2'130A	1'960A	
80 x 10	800	1'310A	1'240A	1'590A	1'500A	2'380A	2'110A	2'730A	2'410A	
100 x 10	1'000	1'600A	1'490A	1'940A	1'810A	2'890A	2'480A	3'310A	2'850A	

ACHTUNG: Wenn Produktehersteller grössere Schienenbelastungen zulassen, sollte mit Hilfe eines Berechnungsprogrammes sichergestellt werden, dass bei Dauerbelastung die max. erreichte Schienentemperatur 65°C nicht überschreitet.

Die Bemessung der Sammelschienen ist nicht nur von der Belastung und den erwähnten Verlusten abhängig. Die Wärmeabfuhr hat ebenfalls einen Einfluss. Diesbezüglich eignen sich Sammelschienen mit einem nichtmetallischen Anstrich besser als blanke Schienen.

347

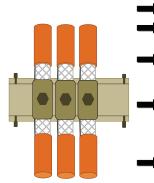
23.8 KABELSCHIRMANSCHLUSS

Grundsätzlich gilt:

Niederfrequente kapazitive Einkoppelungen lassen sich in den meisten Fällen durch eine einseitige Schirmauflage (an Masse) reduzieren.

Zur Reduktion induktiver und hochfrequenter elektromagnetischer Einkoppelungen wirkt nur der beidseitige Schirmanschluss (an Masse).

Vorausgesetzt, der Schirm dient nur der Schutzfunktion, d.h. nicht als Signalleiter, sollten demnach Kabelschirme beidseitig aufgelegt werden. Nur so ist auch eine Schirmwirkung gegen magnetisch induzierte Spannungen möglich.


⇒ Zusammenfassung Kabelschirmanschluss:

einseitiger Schirmanschluss

- Verbindung zur Erde nur an einem Ende.
- Nur gegen niederfrequente elektrische Felder wirksam
- Für Audiosysteme empfiehlt sich der einseitige Schrimanschluss (siehe rechts).
- Ein einseitiges Auflegen des Schirmes kann eine Antennenwirkung verursachen.
- Der einseitige Schirmanschluss ist zu bevorzugen, wenn der Schirm Teil des Betriebsstromkreises ist (z.B. Koaxialkabel).

beidseitiger Schirmanschluss

- Verbindung zur Erde an beiden Enden.
- Wirksam gegen induktive und hochfrequente elektrische Felder.
- Achtung; Bei Audiosystemen kann ein beidseitiger Schirmanschluss aufgrund der Maschenbildung und Ausgleichsströmen zu Brummgeräuschen führen!
- Ein beidseitiges Auflegen des Schirmes kann bei unterschiedlichen Erdpotentialen zu unerwünschten Ausgleichsströmen führen.
- Die erwähnten Ausgleichsströme lassen sich vermeiden, wenn auf der einen Seite der Schirmanschluss über einen Kondensator mit Erde verbunden wird.

Anschluss möglichst grossflächig.

 Möglichst geringer Übergangswiderstand zwischen Kabelabschirmung und Systemerde (sind auch frequenzabhängig).

 Möglichst geringer induktiver Blindwiderstand, was erreicht wird, wenn die Schirmanbindung, d.h. Streckenlänge Schirm
 → Bezugserde sehr kurz ist (Kopplungsimpedanz).

Optimale Ausführung, wenn die Schirmschiene mit Schienenhalter eine direkt leitende Verbindung zum Gehäuse, welches mit der Bezugserde verbunden ist, herstellt. Bei langen Schienen empfiehlt sich der Einsatz mehrerer Halterungen.

Die Kontaktstellen müssen mechanisch fest und beständig sein. Das verwendete Material muss über die gesamte Nutzungsdauer eine niederimpedante Verbindung sicherstellen (Montagestandort und Atmosphäre beachten).

25.10 TEMPERATURMESSUNG MIT METALL – WIDERSTANDSFÜHLER

Allgemeines

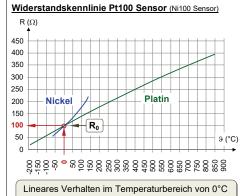
Abgesehen von den Temperatursensor – IC's werden Temperatursensoren unterteilt in:

widerstandstemperaturfühler oder thermoelektrische Temperaturfühler sind passive Sensoren Metalltemperaturfühler (Ni / Pt) oder Halbleitertemperaturfühler (NTC / PTC)

Metall - Widerstandstemperaturfühler

Vorzüge wie einsetzbar für einen grossen Temperaturbereich, hohe Linearität, geringe Alterung und Toleranz sprechen für den Einsatz von Metall – Widerstandstemperaturfühler, besonders für industrielle Anwendungen. Sehr beliebt sind dabei **Pt100** und **Ni100** Messwiderstände.

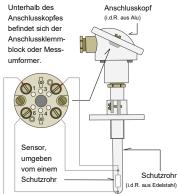
Pt100 Bei einer Temperatur von $0^{\circ}C \rightarrow 100\Omega$


Platin (Platinschicht aufgedampft auf einem Keramik- oder Glasträger oder Platindrahtwicklung mit einer Keramik- oder Glasumhüllung.)

i100

Bei einer Temperatur von $0^{\circ}C \rightarrow 100\Omega$

Nickel (Nickelschicht oder Nickeldraht)
 Gegenüber Pt100 haben Ni100 einen kleineren
 Temperaturbeiwert (-60°C ... +250°C) und grössere
 Grenzabweichungen.

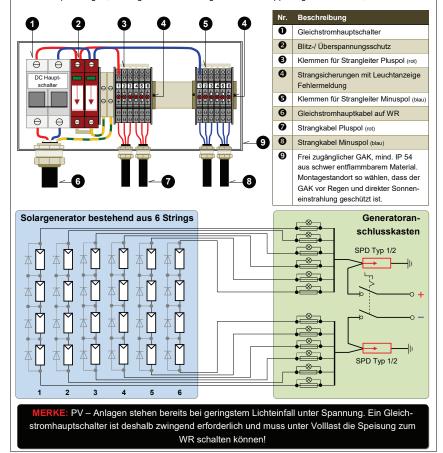

Pt100 sind genormt und für industrielle Temperaturmessungen sehr geeignet.

Genauigkeitsklasse von Pt100 Sensoren

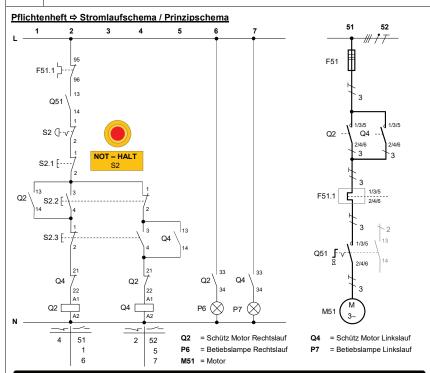
	Temperat		
Klasse	drahtgewickel- ter Widerstand	Schicht- widerstand	max. Abweichung
AA	-50 +250°C	0 +150°C	0.1°C + 0.0017 • 9
Α	-100 +450°C	-30 +300°C	0.15°C + 0.002 • 9
В	-196 +600°C	-50 +500°C	0.3°C + 0.005 • 9
С	-196 +600°C	-50 +600°C	0.6°C + 0.01 • 9
	•	•	•

bis $100^{\circ}\text{C} \rightarrow \text{R}_{8} = \text{R}_{0} (1 + \alpha_{0} \bullet \Delta \theta)$ $\Rightarrow \alpha_{0} = 0.00385\text{K}^{-1}$

Für besondere Anwendungen gibt es Pt50, Pt200, Pt500 und Pt1'000. Je hochohmiger die Messwiderstände, desto einfacher die Messschaltung und geringer der Einfluss der Zuleitungswiderstände auf den Messwert.


Beispiel: → Klasse A, Temperatur 300°C max. Abweichung des Messwertes ±0.75°C

589 696


35.12 GENERATORANSCHLUSSKASTEN (GAK)

Generatoranschlusskasten (GAK)

Die Solarzellenmodule werden bei der Montage zugleich verdrahtet. Die serielle Verdrahtung zu einem String erfolgt dabei direkt von Solarmodul zu Solarmodul. Dafür dienen die Anschlussboxen, welche sich i.d.R. auf der Rückseite der einzelnen Solarmodule befinden. Für die parallele Verdrahtung wird ein Klemmkasten benötigt. Er wird auch Generatoranschlusskasten genannt. Dieser Klemmkasten bildet zugleich die Schnittstelle zwischen dem Solargenerator und dem Wechselrichter. Im Klemmkasten selbst werden die Stringkabel auf Klemmen aufgeschalten die entweder mit Stringsicherungen oder Blockingdioden bestückt sind. Sie eignen sich als String – Prüfmöglichkeit. Zur Spannungsfreischaltung des Wechselrichters dient ein Gleichstromhauptschalter, welcher sich in der Verbindungsleitung zum Wechselrichter befindet. Führt die erwähnte Gleichstromhauptleitung vom Klemmkasten direkt ins innere des Hauses, besitzt der Klemmkasten Überspannungsschutzelemente. Sie sollen die Solaranlage, d.h. Module und vor allem den nachgeschalteten Wechselrichter, vor den Folgen möglicher Überspannungen, hervorgerufen durch magnetische Einkoppelungen von Blitzen, schützen.

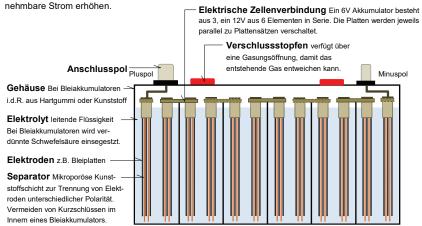
40.21 BEISPIEL MOTORENSTEUERUNG RECHTS- / LINKSLAUF (1. TEIL)

MERKE: Wie bereits erwähnt, muss selbst beim Einsatz einer SPS aus Sicherheitsgründen die Schützenverriegelung hardwaremässig erfolgen. Ein SPS – Programmzyklus ist i.d.R. deutlich schneller als das Schalten eines Schützes, was zu einem Leiterschluss führen könnte!

Die Tasterverriegelung erfolgt hingegen nur noch softwaremässig.

Zuordnungsliste

Zuordnungsliste				
Operand z.B. I1	Symbol z.B. S5	Bedeutung z.B. Taster Motor AUS	Schaltverhalten z.B. Schliesser, Öffner	
l1	Q51	Hilfskontakt von abschliessbarem Revisionsschalter	Schliesser	
12	S2.1	Taster Motor Rechtslauf / Linkslauf AUS	Öffner	
13	S2.2	Taster Motor Rechtslauf EIN	Schliesser	
14	S2.3	Taster Motor Linkslauf EIN	Schliesser	
15	F51.1	Thermorelais Motor	Öffner	
Q1	Q2	Schütz Motor Rechtslauf		
Q2	Q4	Schütz Motor Linkslauf		
Q3	P6	Betriebslampe Rechtslauf		
Q4	P7	Betriebslampe Linkslauf		


751 807

42.28 AKKUMULATOREN ⇒ ALLGEMEINES

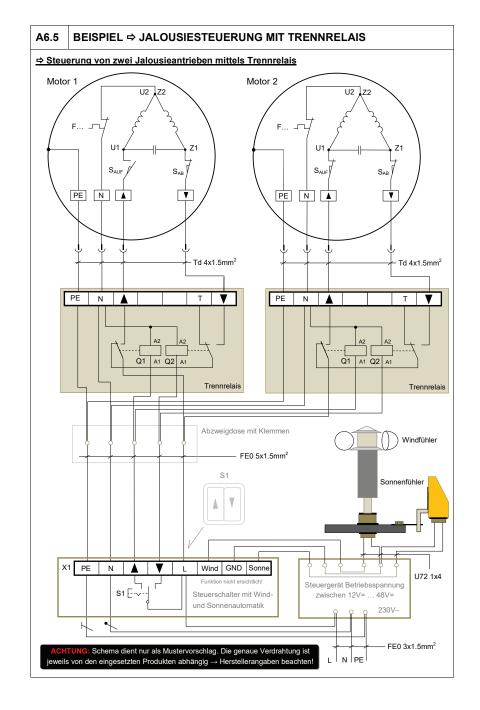
<u>Allgemeines</u>

Akkumulatoren, auch Sekundärelemente genannt, gewinnen immer mehr an Bedeutung. Es sind elektrochemische Energiespeicher. Bei der Aufladung wird die Elektrizität in chemische Energie gespeichert und bei Bedarf wieder in Elektrizität zurückgewandelt.

Die kleinste Einheit eines Akkumulatots bildet eine Zelle. Sie besteht neben dem Elektrolyten (elektrisch leitende Flüssigkeit) aus einer positiven und negativen Elektrode. Zur Erhöhung der Spannung werden mehrere solche Zellen in Serie geschalten. Durch zusätzliches Parallelschalten lässt sich der ent-

➡ Nachfolgend einige Spannungswerte gängiger Akkumulatoren

Spannungen	Akkumulatoren				
	Blei	Nickel – Cadmium	Nickel – Eisen		
Nennspannung	2.00V	1.20V	1.20V		
Ruhespannung	2.04V	1.30V	1.35V		
Ladungserhaltungsspannung	2.23V	1.40V	1.42V		
Gasungsspannung	2.40V	1.55V	1.70V		
Ladeschlussspannung	2.70V	1.65V 1.75V	1.80V		


ACHTUNG: Wird ein Bleiakkumulator mit einer zu hohen Spannung geladen, beginnt die Wasserzersetzung. Es kann Knallgas entstehen → Explosionsgefahr!

Wartungsfreie Akkumulatoren sind gasdicht und zur Vermeidung von Überlastungen z.T. mit Ladereglern ausgerüstet.

⇒ Säuredichte von Bleiakkumulatoren

Beim Laden von Bleiakkumulatoren wird Schwefelsäure gebildet, weshalb die Säuredichte des Elektrolyten zunimmt. Sie ist somit ein Mass für den Ladzustand eines Bleiakkumulators und kann bei Standard – Bleiakkumulatoren mit einem Säuremesser (Aräometer) überprüft werden.

Ladezu- stand	Säuredich- te kg/dm³	Ladezu- stand	Säuredich- te kg/dm³
völlig ge- laden (100%)	1.28	normal entladen (50%)	1.18
teilweise geladen (80%)	1.24	völlig leer (0% 10%)	1.05

