
Information technology — Reference
Architecture for Service Oriented
Architecture (SOA RA) —
Part 3:
Service Oriented Architecture
ontology
Technologie de l’information — Architecture de référence pour
l’architecture orientée service (SOA RA) —
Partie 3: Ontologie de l’architecture orientée service

INTERNATIONAL
STANDARD

ISO/IEC
18384-3

Reference number
ISO/IEC 18384-3:2016(E)

First edition
2016-07-01

© ISO/IEC 2016

﻿

ii� © ISO/IEC 2016 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC 18384-3:2016(E)

﻿

ISO/IEC 18384-3:2016(E)
﻿

Foreword...vi
Introduction...vii
1	 Scope.. 1
2	 Normative references... 1
3	 Terms, definitions and abbreviated terms... 1

3.1	 Terms and definitions.. 1
3.2	 Abbreviated terms.. 1

4	 Notations... 2
5	 Conventions.. 2
6	 Conformance.. 2
7	 SOA Ontology Overview.. 3

7.1	 At a Glance... 3
7.2	 Intended Use.. 5
7.3	 Applications.. 5

8	 System and Element... 5
8.1	 Overview... 5
8.2	 The Element Class... 6
8.3	 The uses and usedBy Properties.. 6
8.4	 Element — Organizational Example... 7
8.5	 The System Class.. 7
8.6	 System — Examples.. 8

8.6.1	 Organizational Example... 8
8.6.2	 Service composition Example... 8
8.6.3	 Car wash Example.. 8

8.7	 The represents and representedBy Properties.. 9
8.8	 The represents and representedBy Examples... 10

8.8.1	 Organizational Example.. 10
8.8.2	 Car Wash Example..10

9	 HumanActor and Task...11
9.1	 Overview.. 11
9.2	 The HumanActor Class... 11
9.3	 HumanActor — Examples... 12

9.3.1	 The uses and usedBy Properties Applied to HumanActor...12
9.3.2	 The represents and representedBy Properties Applied to HumanActor......................12
9.3.3	 Organizational Example.. 12
9.3.4	 Car Wash Example..13

9.4	 The Task Class.. 13
9.5	 The does and doneBy Properties.. 13
9.6	 Task — Examples.. 14

9.6.1	 The uses and usedBy Properties Applied to Task...14
9.6.2	 The represents and representedBy Properties Applied to Task...14
9.6.3	 Organizational Example.. 14
9.6.4	 Car Wash Example..15

10	 Service, ServiceContract, and ServiceInterface..15
10.1	 Overview.. 15
10.2	 The Service Class... 16
10.3	 The performs and performedBy Properties.. 16
10.4	 Service Consumers and Service Providers... 17
10.5	 Service — Examples... 17

10.5.1	 The uses and usedBy properties Applied to Service...17

© ISO/IEC 2016 – All rights reserved� iii

Contents� Page

﻿

ISO/IEC 18384-3:2016(E)
﻿

10.5.2	 The represents and representedBy Properties Applied to Service....................................18
10.5.3	 Exemplifying the Difference Between Doing a Task and Performing a Service.......18
10.5.4	 Car Wash Example..18

10.6	 The ServiceContract Class... 18
10.7	 The interactionAspect and legalAspect Datatype Properties...19
10.8	 The hasContract and isContractFor Properties..20
10.9	 The involvesParty and isPartyTo Properties...20
10.10	 The Effect Class... 21
10.11	 The specifies and isSpecifiedBy Properties... 22
10.12	 ServiceContract — Examples... 22

10.12.1	 Service-level Agreements... 22
10.12.2	 Service Sourcing...23
10.12.3	 Car Wash Example..23

10.13	 The ServiceInterface Class.. 23
10.14	 The Constraints Datatype Property.. 24
10.15	 The hasInterface and isInterfaceOf Properties...25
10.16	 The InformationType Class.. 25
10.17	 The hasInput and isInputAt Properties... 26
10.18	 The hasOutput and isOutputAt Properties... 26
10.19	 Examples.. 26

10.19.1	 Interaction Sequencing..26
10.19.2	 Car wash example...27

11	 Composition and its Subclasses..27
11.1	 Overview.. 27
11.2	 The Composition Class... 27
11.3	 The compositionPattern Datatype Property...28

11.3.1	 Overview... 28
11.3.2	 The Orchestration Composition Pattern...29
11.3.3	 The Choreography Composition Pattern..29
11.3.4	 The Collaboration Composition Pattern..29

11.4	 The orchestrates and orchestratedBy Properties...31
11.5	 The ServiceComposition Class.. 32
11.6	 The Process Class.. 32
11.7	 Service Composition and Process Examples... 33

11.7.1	 Simple Service Composition Example...33
11.7.2	 Process Example..33
11.7.3	 Process and Service Composition Example..34
11.7.4	 Car Wash Example..34

12	 Policy...34
12.1	 Overview.. 34
12.2	 The Policy Class.. 34
12.3	 The appliesTo and isSubjectTo Properties.. 35
12.4	 The setsPolicy and isSetBy Properties... 35
12.5	 Examples.. 36

12.5.1	 Car Wash Example..36
13	 Event..36

13.1	 Overview.. 36
13.2	 The Event Class... 36
13.3	 The generates and generatedBy Properties.. 37
13.4	 The respondsTo and respondedToBy Properties..37

Annex A (informative) Complete Car Wash Example...39
Annex B (informative) Internet Purchase Example..44
Annex C (normative) The OWL Definition of the SOA Ontology...46
Annex D (informative) Class Relationship Matrix...55

iv� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)
﻿

Annex E (informative) Terms Mapping Between the SOA RA Parts..59
Bibliography..74

© ISO/IEC 2016 – All rights reserved� v

﻿

ISO/IEC 18384-3:2016(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword — Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, Subcommittee
SC 38, Cloud Computing and Distributed Platforms.

ISO/IEC 18384 consists of the following parts, under the general title Reference Architecture for Service
Oriented Architecture (SOA RA):

—	 Part 1: Terminology and concepts for SOA

—	 Part 2: Reference Architecture for SOA Solutions

—	 Part 3: Service Oriented Architecture Ontology

﻿

vi� © ISO/IEC 2016 – All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

﻿

ISO/IEC 18384-3:2016(E)

Introduction

Service oriented architecture (SOA) is an architectural style in which business and IT systems are
designed in terms of services available at an interface and the outcomes of these services. A service
is a logical representation of a set of activities that has specified outcomes, is self-contained, it may be
composed of other services but consumers of the service need not be aware of any internal structure.

SOA takes “service” as its basic element to constitute and integrate information systems so that they are
suitable for a variety of solution requirements. SOA enables interactions between businesses without
needing to specify aspects of any particular business domain. Using the SOA architectural style can
improve the efficiency of developing information systems and integrating and reusing IT resources. In
addition, using the SOA architectural style can help enable rapid response of information systems to
ever-changing business needs.

This International Standard is intended to be a single set of SOA technical principles, specific norms,
and standards for the world-wide market to help remove confusion about SOA and improve the
standardization and quality of solutions.

This International Standard defines the terminology, technical principles, reference architecture
and the ontology for SOA. ISO/IEC 18384 can be used to introduce SOA concepts, as a guide to the
development and management of SOA solutions, as well as be referenced by business and industry
standards.

This International Standard contains three parts:

1)	 ISO/IEC 18384-1 which defines the terminology, basic technical principles and concepts for SOA.

2)	 ISO/IEC 18384-2 which defines the detailed SOA reference architecture layers, including a
metamodel, capabilities, architectural building blocks, as well as types of services in SOA solutions.

3)	 ISO/IEC 18384-3 which defines the core concepts of SOA and their relationships in the Ontology.

The targeted audience of this International Standard includes, but is not limited to, standards
organizations, architects, architecture methodologists, system and software designers, business
people, SOA service providers, SOA solution and service developers, and SOA service consumers who
are interested in adopting and developing SOA.

Users of this International Standard will find it useful to read ISO/IEC 18384-1 for an understanding of
SOA basics. ISO/IEC 18384-1 should be read before reading or applying ISO/IEC 18384-2. For those new
to the SOA reference architecture in ISO/IEC 18384-2:2016, Clause 4 provides a high level understanding
of the reference architecture for SOA solutions. The remaining clauses provide comprehensive details
of the architectural building blocks and tradeoffs needed for a SOA Solution. This part of ISO/IEC 18384
contains the SOA Ontology, which is a formalism of the core concepts and terminology of SOA, with
mappings to both UML and OWL. The SOA Ontology can be used independent of or in conjunction with
ISO/IEC 18384-1 and ISO/IEC 18384-2.

The purpose of this part of ISO/IEC 18384 is to contribute to developing and fostering common
understanding of service-oriented architecture (SOA) in order to improve alignment between the
business and information technology communities and facilitate SOA adoption.

The SOA Ontology defines the concepts, terminology, and semantics of SOA in both business and
technical terms, in order to

—	 create a foundation for further work in domain-specific areas,

—	 enable communications between business and technical people,

—	 enhance the understanding of SOA concepts in the business and technical communities,

—	 provide a means to state problems and opportunities clearly and unambiguously to promote mutual
understanding, and

﻿

© ISO/IEC 2016 – All rights reserved� vii

﻿

ISO/IEC 18384-3:2016(E)

—	 provide a starting point for model-driven development of SOA solutions.

﻿

viii� © ISO/IEC 2016 – All rights reserved

﻿

INTERNATIONAL STANDARD� ISO/IEC 18384-3:2016(E)

Information technology — Reference Architecture for
Service Oriented Architecture (SOA RA) —

Part 3:
Service Oriented Architecture ontology

1	 Scope

This part of ISO/IEC 18384 defines a formal ontology for service-oriented architecture (SOA), an
architectural style that supports service orientation. The terms defined in this ontology are key terms
from the vocabulary in ISO/IEC 18384-1.

2	 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 18384-1, Information technology — Reference Architecture for Service Oriented Architecture (SOA
RA) — Part 1 Terminology and concepts for SOA

3	 Terms, definitions and abbreviated terms

3.1	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 18384-1 and the
following apply.

3.1.1
opaque
having no internal structure that is visible to an external observer

3.1.2
ontology
model that represents a domain and is used to reason about the objects in that domain and the relations
between them

Note 1 to entry: This part of ISO/IEC 18384 is high level and not meant to be used for formal reasoning.

[SOURCE: ISO/IEC/TR 24800‑1:2007, 2.1.9]

3.2	 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

ABB Architecture Building Block
BPMN Business Process Model and Notation
EA Enterprise Architecture
ESB Enterprise Service Bus
IT Information Technology

© ISO/IEC 2016 – All rights reserved� 1

﻿

ISO/IEC 18384-3:2016(E)

OWL Web Ontology Language
RA Reference Architecture
RDF Resource Definition Framework
SLA Service Level Agreement
SOA Service Oriented Architecture
UML Unified Modeling Language

4	 Notations

The ontology is represented in the web ontology language (OWL) defined by the World Wide Web
Consortium. OWL has three increasingly expressive sub-languages: OWL-Lite, OWL-DL, and OWL-
Full (see Reference [10] for a definition of these three dialects of OWL). This ontology uses OWL-DL,
the sub-language that provides the greatest expressiveness possible while retaining computational
completeness and decidability.

The ontology contains classes and properties corresponding to the concepts of SOA. The formal
OWL definitions are supplemented by natural language descriptions of the concepts, with graphic
illustrations of the relations between them, and with examples of their use. For purposes of exposition,
the ontology also includes UML (see Reference [8]) diagrams that graphically illustrate its classes
and properties of the ontology. The natural language and OWL definitions contained in this part of
ISO/IEC 18384 constitute the authoritative definition of the ontology; the diagrams are for explanatory
purposes only. Some of the natural language terms used to describe the concepts are not formally
represented in the ontology; those terms are meant in their natural language sense.

The availability of an OWL expression a standard RDF format allows easy loading into tools for
architects and developers and allows validation.

This part of ISO/IEC 18384 uses examples to illustrate the ontology. One of these, the car-wash example,
is used consistently throughout to illustrate the main concepts (see Annex A for the complete example).
Other examples are used ad hoc in individual clauses to illustrate particular points.

5	 Conventions

Bold font is used for OWL class, property, and instance names where they appear in clause text.

Italic strings are used for emphasis and to identify the first instance of a word requiring definition.

OWL definitions and syntax are shown in fixed-width font.

An unlabeled arrow in the illustrative UML diagrams means subclass.

The examples in this part of ISO/IEC 18384 are strictly informative and are for illustrative purposes.

6	 Conformance

ISO/IEC 18384 contains three parts which have different conformance requirements:

1.	 terminology and concepts — conformance only to terms and adherence to the semantics in the
definitions;

2.	 reference architecture for SOA solutions — conformance only to semantics of the metamodel and
any Layers, ABBs, or capabilities that are used;

3.	 SOA Ontology — conformance for OWL or non-OWL applications.

Conformance to this part of ISO/IEC 18384 is defined as follows.

﻿

2� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

There are two kinds of applications that may conform to this ontology. One is the OWL-based ontologies
(typically extensions of the SOA ontology); the other is a non-OWL application, such as a meta-model or
a piece of software (see Clause 2 for the OWL version that is required).

A conforming OWL application (derived OWL-based ontology)

—	 shall conform to the OWL standard specified in Clause 2,

—	 shall include the whole of the ontology contained in Annex C,

—	 may add other OWL constructs, including class and property definitions, and

—	 may import other ontologies in addition to the SOA ontology.

This part of ISO/IEC 18384 does not use any OWL 2 (see Reference [15]) constructs; however,
conforming applications may choose to use OWL or OWL 2.

A conforming non-OWL application

—	 shall include a defined and consistent transformation (at least semantic mapping) to a non-trivial
subset of the ontology contained in Annex C,

—	 may add other constructs, including class and property definitions, and

—	 may import and/or use other ontologies in addition to the SOA ontology.

7	 SOA Ontology Overview

7.1	 At a Glance

A graphically compressed visualization of the entire ontology is shown in Figure 1.

The concepts illustrated in Figure 1 are described in the body.

This part of ISO/IEC 18384 starts by explaining the most basic foundational concept of elements and
systems followed by explaining the elements of SOA human actor and task and then service concepts
and descriptions and contracts for services and building on that to explain compositions of services.
Finally, this part of ISO/IEC 18384 wraps up with Policies and Events which are relevant to all of the
elements of SOA.

﻿

© ISO/IEC 2016 – All rights reserved� 3

﻿

ISO/IEC 18384-3:2016(E)

Figure 1 — SOA Ontology — Graphical Overview

﻿

4� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

7.2	 Intended Use

This Clause describes caveats and assumptions for how this ontology should be interpreted.

—	 This ontology is intended for high level representation of concepts and is not intended for formal
reasoning.

—	 This part of ISO/IEC 18384 is designed for use by business people, architects and systems and
software designers to enable communications between business and technical people.

—	 This part of ISO/IEC 18384 focuses on a minimal set of SOA terms, modelling those terms in detail.

—	 This part of ISO/IEC 18384 explains relationships to other important concepts, but not at the same
level of detail as the SOA terms. For example, policy is modelled, but not in great detail.

—	 This part of ISO/IEC 18384 restricts itself to OWL constructs, not using those introduced in OWL
2 (see Reference [15]), because the OWL constructs are sufficient for the scope of this part of
ISO/IEC 18384. It is consistent with OWL 2 and does not preclude others from using it with OWL 2.

—	 This part of ISO/IEC 18384 elaborates on the SOA terms and relationships in ISO/IEC 18384-1 and
ISO/IEC 18384-2. A separate metamodel in ISO/IEC 18384-2 provides the basis for the modeling in
ISO/IEC 18384-2 and is used to describe and understand the reference architecture.

—	 This part of ISO/IEC 18384 defines the concepts, terminology, and semantics of SOA in both business
and technical terms, in order to create a foundation for further work in domain-specific areas.

—	 This part of ISO/IEC 18384 provides a means to state problems and opportunities clearly and
unambiguously to promote mutual understanding.

—	 This part of ISO/IEC 18384 may provide a starting point for model-driven development of SOA
solutions.

7.3	 Applications

The SOA ontology was developed in order to aid understanding and can simply be read.

It can also be used as a starting point for model-driven development, by applying it to particular usage
domains and applications.

The ontology is applied to a particular usage domain by adding SOA OWL class instances of things in
that domain. This is sometimes referred to as “populating the ontology.” In addition, an application can
add definitions of new classes and properties, can import other ontologies, and can import the ontology
OWL representation into other ontologies.

The ontology defines the relations between terms, but does not prescribe exactly how they should be
applied. For explanations of what ontologies are and why they are needed, see References [11] and [14].
The examples provided in this part of ISO/IEC 18384 are describing one way in which the ontology could
be applied in practical situations. Different applications of the ontology to the same situations would
nevertheless be possible. The precise instantiation of the ontology in particular practical situations is
a matter for users of the ontology, as long as the concepts and constraints defined by the ontology are
correctly applied, the instantiation is valid.

8	 System and Element

8.1	 Overview

System and element are two of the concepts of this ontology. Both are concepts that are often used by
practitioners, including the notion that systems have elements and that systems can be hierarchically
combined (systems of systems). What differs from domain to domain is the specific nature of systems
and elements, for instance, an electrical system has very different kinds of elements than an SOA system.

﻿

© ISO/IEC 2016 – All rights reserved� 5

﻿

ISO/IEC 18384-3:2016(E)

In the ontology, only elements and systems within the SOA domain are considered. Some SOA sub-
domains use the term component rather than the term element. This is not contradictory, as any
component of an SOA system is also an element of that (composite) system.

This Clause describes the following classes of the ontology:

Element

System

In addition, it defines the following properties:

uses and usedBy

represents and representedBy

8.2	 The Element Class
<owl:Class rdf:about="#Element">
</owl:Class>

An element is an entity that is opaque and indivisible at a given level of abstraction. The element has
a clearly defined boundary. The concept of element is captured by the Element OWL class, which is
illustrated in Figure 2.

Figure 2 — The Element Class

In the context of the SOA ontology, only functional elements that belong to the SOA domain are
considered in detail. There are other kinds of Elements than members of the four named subclasses
(System, HumanActor, Task, and Service) described later in this ontology. Examples of such other kinds
of Elements are things like software components or technology components (such as Enterprise Service
Bus (ESB) implementations, etc.).

8.3	 The uses and usedBy Properties
<owl:ObjectProperty rdf:about="#uses">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#usedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#uses"/>
 </owl:inverseOf>
</owl:ObjectProperty>

Elements may use other elements in various ways. In general, the notion of some element using another
element is applied by practitioners for all of models, executables, and physical objects. What differs
from domain to domain is the way in which such use is perceived.

﻿

6� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

An element uses another element if it interacts with it in some fashion. Interacts here is interpreted very
broadly ranging through, for example, an element simply being a member of (used by) some system (see
later for a formal definition of the System class), an element interacting with (using) another element
(such as a service; see later for a formal definition of the Service class) in an ad hoc fashion, or even a
strongly coupled dependency in a composition (see later for a formal definition of the Composition
class). The uses property, and its inverse usedBy, capture the abstract notion of an element using
another. These properties capture not just transient relations. Instantiations of the property can
include “uses at this instant”, “has used”, and “may in future use”.

For the purposes of this ontology, the multitude of different possible semantics of a uses relationship is
not enumerated and formally defined .The semantic interpretations are left to a particular sub-domain,
application or even design approach.

8.4	 Element — Organizational Example

Using an organizational example, typical instances of Element are organizational units and people.
Whether to perceive a given part of an organization as an organizational unit or as the set of people
within that organizational unit is an important choice of abstraction level.

Inside the boundary of the organizational unit, as the organizational unit can in fact use the people
that are members of it. Note that the same person can in fact be a member of (be used by) multiple
organizational units.

Outside the boundary the internal structure of an organizational unit remains opaque to an external
observer, as the enterprise wants to be able to change the people within the organizational unit without
having to change the definition of the organizational unit itself.

This simple example expresses that some elements have an internal structure. In fact, from an internal
perspective they are an organized collection of other simpler things (captured by the System class
defined in 8.5).

8.5	 The System Class
<owl:Class rdf:about="#System">
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
</owl:Class>

A system is an organized collection of other things. Specifically, things in a system collection are
instances of Element, each such instance being used by the system. The concept of system is captured
by the System OWL class, which is illustrated in Figure 3.

Figure 3 — The System Class

﻿

© ISO/IEC 2016 – All rights reserved� 7

﻿

ISO/IEC 18384-3:2016(E)

This definition of System is heavily influenced by ISO/IEC 42010:2011 (see Reference [13]).

In the context of the SOA ontology, only functional systems that belong to the SOA domain are considered
in detail. Note that a fully described instance of System should have by its nature (as a collection) a part
of relationship to at least one instance of Element.

Since System is a subclass of Element, all systems have a boundary and are opaque to an external
observer (black box view). This excludes from the System class structures that have no defined
boundary. From an SOA perspective, this is not really a loss since all interesting SOA systems do have
the characteristic of being possible to perceive from an outside (consumer) perspective. Furthermore,
having System as a subclass of Element allows us to naturally express the notion of systems of systems
— the lower-level systems are simply elements used by the higher level system.

At the same time as supporting an external view point (black box view), all systems also support an
internal view point (white box view) expressing how they are an organized collection. As an example,
for the notion of a service this would typically correspond to a service specification view versus
a service realization view (similar to the way that SoaML[9] defines services as having both a black
box/specification part and a white box/realization part).

It is important to realize that even though systems using elements express an important aspect of the
uses property, it is not necessary to “invent” a system just to express that some element uses another.
In fact, even for systems it may be necessary to to express that they can use elements outside their own
boundary — though this in many cases will preferably be expressed not at the system level, but rather
by an element of the system using that external Element instance.

System is defined as disjoint with the Service and Task classes. Instances of these classes are considered
not to be collections of other things. System is specifically not defined as disjoint with the HumanActor
class since an organization is many cases in fact just a particular kind of system. A special intersection
class to represent this fact is not defined.

8.6	 System — Examples

8.6.1	 Organizational Example

Continuing the organizational example from 8.5, an organizational unit can now be expressed as an
instance of System has the people in it as members (and instances of element).

8.6.2	 Service composition Example

Using a service composition example, services A and B are instances of Element and the composition of
A and B is an instance of System (that uses A and B). It is important to realize that the act of composing
is different than composition as a thing — it is in the latter sense that the term composition is used here.

See also Clause 11 for a formal definition of the concepts of service and service composition (and a
repeat of the example in that more precise context).

8.6.3	 Car wash Example

Consider a car wash business. The company as a whole is an organizational unit and can be instantiated
in the ontology in the following way:

—	 CarWashBusiness is an instance of System.

—	 Joe (the owner) is an instance of Element and used by (owner of) CarWashBusiness.

—	 Mary (the secretary) is an instance of Element and used by (employee of) CarWashBusiness.

—	 John (the pre-wash guy) is an instance of Element and used by (employee of) CarWashBusiness.

﻿

8� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

—	 Jack (the washing manager and operator) is an instance of Element and used by (employee of)
CarWashBusiness.

8.7	 The represents and representedBy Properties
<owl:ObjectProperty rdf:about="#represents">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#representedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#represents"/>
 </owl:inverseOf>
</owl:ObjectProperty>

The environment described by an SOA is intrinsically hierarchically composite (see also 11.2 for a
definition of the Composition class); in other words, the elements of SOA systems can be repeatedly
composed to ever higher levels of abstraction. One aspect of this has already been addressed by the
uses and usedBy properties in that the notion of systems of systems can be expressed. This is still a
very concrete relationship though, and does not express the concept of architectural abstraction. The
need for architectural abstraction is found in various places, such as a role representing the people
playing that role, an organizational unit representing the people within it (subtly different from that
same organizational unit using the people within it, as the represents relationship indicates the
organizational unit as a substitute interaction point), an architectural building block representing an
underlying construct (for instance, important to enterprise architects wanting to explicitly distinguish
between constructs and building blocks), and an enterprise service bus (ESB) representing the services
that are accessible through it (for instance, relevant when explicitly modelling operational interaction
and dependencies). The concept of such an explicitly changing view point, or level of abstraction, is
captured by the represents and representedBy properties illustrated in Figure 4.

Figure 4 — The represents and representedBy Properties

It is important to understand the exact nature of the distinction between using an element (E1) and
using another element (E2) that represents E1. If E1 changes, then anyone using E1 directly would
experience a change, but someone using E2 would not experience any change.

When applying the architectural abstraction via the represents property there are three different
architectural choices that can be made:

An element represents another element in a very literal way, simply by hiding the existence of that
element and any changes to it. There will be a one-to-one relationship between the instance of Element
and the (different) instance of Element that it represents. A simple real-world example is the notion of a
broker acting as an intermediary between a seller (that does not wish to be known) and a buyer.

An element represents a particular aspect of another element. There will be a many-to-one relationship
between many instances of Element (each of which represents a different aspect), and one (different)

﻿

© ISO/IEC 2016 – All rights reserved� 9

﻿

ISO/IEC 18384-3:2016(E)

instance of Element. A simple real-world example is the notion that the same person can play (be
represented by) many different roles.

An element is an abstraction that can represent many other elements. There will be a one-to-many
relationship between one instance of Element (as an abstraction) and many other instances of Element.
A simple real-world example is the notion of an architectural blueprint representing an abstraction of
many different buildings being built according to that blueprint.

Note that in most cases, an instance of Element will represent only one kind of thing. Specifically, an
instance of Element will typically represent instances of at most one of the classes System, Service,
Human Actor, and Task (with the exception of the case where the same thing is both an instance of
System and an instance of Actor). See later clauses for the definitions of Service, Human Actor, and Task.

8.8	 The represents and representedBy Examples

8.8.1	 Organizational Example

Expanding further on the organizational example, assume that a company desires to form a new
organizational unit O1. There are two ways of doing this.

Define the new organization directly as a collection of people P1, P2, P3, and P4. This means that the
new organization is perceived to be a leaf in the organizational hierarchy, and that any exchange of
personnel means that its definition needs to change.

Define the new organization as a higher-level organizational construct, joining together two existing
organizations O3 and O4. Coincidentally, O3 and O4 between them may have the same four people
P1, P2, P3, and P4, but the new organization really doesn’t know, and any member of O3 or O4 can be
changed without needing to change the definition of the new organization. Furthermore, any member
of O3 is intrinsically not working in the same organization as the members of O4 (in fact need not even
be aware of them) — contrary to the first option where P1, P2, P3, and P4 are all colleagues in the same
new organization.

In this way, the abstraction aspect of the represents property induces an important difference in the
semantics of the collection defining the new organization. Any instantiation of the ontology can and
should use the represents and representedBy properties to crisply define the implied semantics and
lines of visibility/change.

8.8.2	 Car Wash Example

Joe chooses to organize his business into two organizational units, one for the administration and one
for the actual washing of cars. This can be instantiated in the ontology in the following way:

—	 CarWashBusiness is an instance of System.

—	 AdministrativeSystem is an instance of System.

—	 Administration is an instance of Element that represents AdministrativeSystem (the organizational
unit aspect is opaque, aka ignoring anything else about AdministrativeSystem).

—	 CarwashBusiness uses (has organizational unit) Administration.

—	 CarWashSystem is an instance of System.

—	 CarWash is an instance of Element that represents CarWashSystem (the organizational unit aspect
is opaque, aka ignoring anything else about CarWashSystem).

—	 CarWash is a member of CarWashBusiness.

—	 Joe (the owner) is an instance of Element and now used by AdministrationSystem.

—	 Mary (the secretary) is an instance of Element and now used by AdministrationSystem.

﻿

10� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

—	 John (the pre-wash guy) is an instance of Element and now used by CarWashSystem.

—	 Jack (the wash manager and operator) is an instance of Element and now used by CarWashSystem.

9	 HumanActor and Task

9.1	 Overview

People, organizations, and the things they do are important aspects of SOA systems. HumanActor and
Task capture this as another set of core concepts of the ontology. Both are concepts that are generic and
have relevance outside the domain of SOA. For the purposes of this SOA ontology, specific scope is given
in that tasks are intrinsically atomic [corresponding to, for instance, the business process modeling
notation (BPMN) 2.0 definition of Task (see Reference [4])] and human actors are restricted to people
and organizations.

This Clause describes the following classes of the ontology:

HumanActor

Task

In addition, it defines the following properties:

does and doneBy

9.2	 The HumanActor Class
<owl:Class rdf:about="#HumanActor">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 </owl:Class>

<owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
</owl:Class>
A human actor is a person or an organization. The concept of human actor is captured by the
HumanActor OWL class, which is illustrated in Figure 5.

﻿

© ISO/IEC 2016 – All rights reserved� 11

﻿

ISO/IEC 18384-3:2016(E)

Figure 5 — The HumanActor Class

HumanActor is defined as disjoint with the Service and Task classes. Instances of these classes are
considered not to be people or organizations. HumanActor is specifically not defined as disjoint
with System since an organization in many cases is in fact just a particular kind of system. A special
intersection class to represent this fact is not defined.

9.3	 HumanActor — Examples

9.3.1	 The uses and usedBy Properties Applied to HumanActor

In one direction, a human actor can itself use things such as services, systems, and other human actors.
In the other direction, a human actor can, for instance, be used by another human actor or by a system
(as an element within that system such as a human actor in a process).

9.3.2	 The represents and representedBy Properties Applied to HumanActor

As mentioned in the introduction to this Clause, human actors are intrinsically part of systems that
instantiate service oriented architectures. Yet in many cases as an element of an SOA system, the specific
person or organization is not discussed, rather an abstract representation of them that participates in
processes, provides services, etc. In other words, elements representing human actors are discussed

As examples, a broker (instance of HumanActor) may represent a seller (instance of HumanActor) that
wishes to remain anonymous, a role (instance of Element) may represent (the role aspect of) multiple
instances of HumanActor, and an organizational unit (instance of HumanActor) may represent the
many people (all instances of HumanActor) that are part of it.

Note that a “role class” has not been defined, as using Element with the represents property is a more
general approach which does not limit the ability to also define role-based systems. For all practical
purposes there is simply a “role subclass” of Element, a subclass that is not defined explicitly.

9.3.3	 Organizational Example

Continuing the organizational example from 8.8.1, P1 (John), P2 (Jack), P3 (Joe), and P4 (Mary) can
now be expressed as instances of Element which are in fact (people) instances of HumanActor.
All of O1 (CarWashBusiness), O3 (CarWash), and O4 (Administration) can also be expressed as
(organization) human actors from an action perspective at the same time that they are systems from a
collection/composition perspective.

﻿

12� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

9.3.4	 Car Wash Example

See Annex A for the complete organizational aspect of the car wash example.

9.4	 The Task Class
<owl:Class rdf:about="#Task">
 <owl:disjointWith>
 <owl:Class rdf:about="#System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
</owl:Class>
A task is an atomic action which accomplishes a defined result. Tasks are done by people or organizations,
specifically by instances of HumanActor.

The Business Process Modeling Notation (BPMN) 2.0 defines task as follows: “A Task is an atomic
Activity within a Process flow (see Reference [4]). A Task is used when the work in the Process cannot
be broken down to a finer level of detail. Generally, an end-user and/or applications are used to perform
the Task when it is executed.” For the purposes of the ontology, precision has been added by formally
separating the notion of doing from the notion of performing. Tasks are (optionally) done by human
actors, furthermore (as instances of Element) tasks can use services that are performed by technology
components (see details in 10.3; see also the example in Annex A).

The concept of task is captured by the Task OWL class, which is illustrated in Figure 6.

Figure 6 — The Task Class

Task is defined as disjoint with the System, Service, and HumanActor classes. Instances of these classes
are considered not to be atomic actions.

9.5	 The does and doneBy Properties
<owl:ObjectProperty rdf:about="#doneBy">
 <rdfs:domain rdf:resource="#Task"/>
 <rdfs:range rdf:resource="#HumanActor"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#does">

﻿

© ISO/IEC 2016 – All rights reserved� 13

﻿

ISO/IEC 18384-3:2016(E)

 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:inverseOf>
</owl:ObjectProperty>

<owl:Class rdf:about="#Task">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>0</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
Tasks are naturally thought of as being done by people or organizations. If thinking of tasks as being
the actual things done, then the natural cardinality is that each instance of Task is done by at most one
instance of HumanActor. Due to the atomic nature of instances of Task the case is ruled out where
such an instance is done jointly by multiple instances of HumanActor. The cardinality can be zero if
someone chooses not to instantiate all possible human actors. On the other hand, the same instance
of HumanActor can (over time) easily do more than one instance of Task. The does property, and its
inverse doneBy, capture the relation between a human actor and the tasks it does.

9.6	 Task — Examples

9.6.1	 The uses and usedBy Properties Applied to Task

In one direction, the most common case of a task using another element is where an automated task (in
an orchestrated process; see Clause 11 for the definition of process and orchestration) uses a service as
its realization. In the other direction, a task can, for instance, be used by a system (as an element within
that system, such as a task in a process).

9.6.2	 The represents and representedBy Properties Applied to Task

As mentioned in the introduction to this Clause, tasks are intrinsically part of SOA systems. Yet in many
cases as an element of an SOA system, the actual thing being done is not discussed, rather an abstract
representation of it that is used as an element in systems, processes, etc. In other words, discuss
elements representing tasks.

As a simple example, an abstract activity in a process model (associated with a role) may represent a
concrete task (done by a person fulfilling that role). Note that due to the atomic nature of a task it does
not make sense to talk about many elements representing different aspects of it.

9.6.3	 Organizational Example

Continuing the organizational example from 8.8.1, the tasks that are done by human actors (people)
P1, P2, P3, and P4 can now be expressed, and how those tasks can be elements in bigger systems that
describe things such as organizational processes. Clause 11 will deal formally with the concept of
composition, including properly defining the concept of a process as one particular kind of composition.

﻿

14� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

9.6.4	 Car Wash Example

As an important part of the car wash system, John and Jack perform certain manual tasks required for
washing a car properly.

—	 Jack and John are instances of HumanActor.

—	 WashWindows is an instance of Task and is done by John.

—	 PushWashButton is an instance of Task and is done by Jack.

10	 Service, ServiceContract, and ServiceInterface

10.1	 Overview

Service is another core concept of this ontology. It is a concept that is fundamental to SOA and always
used in practice when describing or engineering SOA systems, yet it is not easy to define formally. The
ontology is based on the following definition of service:

A service is a “logical representation of a set of activities that has specified outcomes, is self-contained,
may be composed of other services, and is a “black box” to consumers of the service”

This corresponds to the existing official definition of the term in the Reference architecture for SOA,
ISO/IEC 18384-1.

The word activity in the definition of service is used in the general English language sense of the word,
not in the process-specific sense of that same word (i.e. activities are not necessarily process activities).
The ontology purposefully omits “business” as an intrinsic part of the definition of service. The reason
for this is that the notion of business is relative to a person’s viewpoint, as an example, one person’s
notion of IT is another person’s notion of business (the business of IT). Service as defined by the ontology
is agnostic to whether the concept is applied to the classical notion of a business domain or the classical
notion of an IT domain.

Other current SOA-specific definitions of the term service include the following:

—	 “A mechanism to enable access to one or more capabilities, where the access is provided using a
prescribed interface and is exercised consistent with constraints and policies as specified by the service
description.” (see Reference [3])

—	 “A capability offered by one entity or entities to others using well-defined ‘terms and conditions’ and
interfaces.” (see Reference [9])

Within the normal degree of precision of the English language, these definitions are not contradictory;
they are stressing different aspects of the same concept. All three definitions are SOA-specific though,
and represent a particular interpretation of the generic English language term service.

This Clause describes the following classes of the ontology:

—	 Service;

—	 ServiceContract;

—	 ServiceInterface;

—	 InformationType.

In addition, it defines the following properties:

—	 performs and performedBy;

—	 hasContract and isContractFor;

﻿

© ISO/IEC 2016 – All rights reserved� 15

﻿

ISO/IEC 18384-3:2016(E)

—	 involvesParty and isPartyTo;

—	 specifies and isSpecifiedBy;

—	 hasInterface and isInterfaceOf;

—	 hasInput and isInputAt;

—	 hasOutput and isOutputAt.

10.2	 The Service Class
<owl:Class rdf:about="#Service">
 <owl:disjointWith>
 <owl:Class rdf:about="#System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
</owl:Class>
A service is a logical representation of a set of activities that has specified outcomes, is self-contained,
may be composed of other services, and is a “black box” to consumers of the service. The concept of
service is captured by the Service OWL class, which is illustrated in Figure 7.

Figure 7 — The Service Class

In the context of the SOA ontology, only SOA-based services are considered. Other domains, such as
integrated service management, can have services that are not SOA-based hence are outside the
intended scope of the SOA ontology.

Service is defined as disjoint with the System, Task, and HumanActor classes. Instances of these classes
are considered not to be services themselves, even though they may provide capabilities that can be
offered as services.

10.3	 The performs and performedBy Properties
<owl:ObjectProperty rdf:about="#performs">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Service"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#performedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#performs"/>
 </owl:inverseOf>
</owl:ObjectProperty>

﻿

16� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

As a service itself is only a logical representation, any service is performed by something. The something
that performs a service is opaque to anyone interacting with it, an opaqueness which is the exact nature
of the Element class. This concept is captured by the performs and performedBy properties as illustrated
in the Service Class in Figure 7.

This also captures the fact that services can be performed by elements of other types than systems.
This includes elements such as software components, human actors, and tasks.

Note that the same instance of Service can be performed by many different instances of Element.
As long as the service performed is the same, an external observer cannot tell the difference (for
contractual obligations, SLAs, etc. see the definition of the ServiceContract class in 10.6). Conversely,
any instance of Element may perform more than one service or none at all.

While a service can be performed by other elements, the service itself (as a purely logical representation)
does not perform other services. See the Simple Service Composition Example (11.7.1) for an example of
how to represent service compositions formally in the ontology.

10.4	 Service Consumers and Service Providers

Terminology used in an SOA environment often includes the notions of service providers and service
consumers. There are two challenges with this terminology:

—	 It does not distinguish between the contractual obligation aspect of consume/provide and the
interaction aspect of consume/provide. A contractual obligation does not necessarily translate to
an interaction dependency, if for no other reason than because the realization of the contractual
obligation may have been sourced to a third party.

—	 Consuming or providing a service is a statement that only makes sense in context, either a
contractual context or an interaction context. These terms are consequently not well suited for
making statements about elements and services in isolation.

These are the reasons why the ontology has chosen not to adopt consume and provide as core concepts,
rather instead allows consume or provide terms used with contractual obligations and/or interaction
rules described by service contracts; see the definition of the ServiceContract class in 10.6. In its
simplest form, outside the context of a formal service contract, the interaction aspect of consuming
and providing services may even be expressed simply by saying that some element uses (consumes) a
service or that some element performs (provides) a service; see also the examples in 10.5.

10.5	 Service — Examples

10.5.1	 The uses and usedBy properties Applied to Service

In one direction, it does not really make sense to talk about a service that uses another element. While
the thing that performs the service might very well include the use of other elements (and certainly will
in the case of Service Composition), the service itself (as a purely logical representation) does not use
other elements.

In the other direction, the most common of all interactions is found in an SOA environment: the notion
that some element uses a service by interacting with it. Note that from an operational perspective this
interaction actually reaches somewhat beyond the service itself by involving the following typical steps:

—	 picking the service to interact with (this statement is agnostic as to whether this is done dynamically
at runtime or statically at design and/or construct time);

—	 picking an element that performs that service [in a typical SOA environment, this is most often done
“inside” an enterprise service bus (ESB)];

—	 interacting with the chosen element (that performs the chosen) service (often also facilitated by
an ESB).

﻿

© ISO/IEC 2016 – All rights reserved� 17

﻿

ISO/IEC 18384-3:2016(E)

10.5.2	 The represents and representedBy Properties Applied to Service

Concepts such as service mediations, service proxies, ESBs, etc. are natural to those practitioners that
describe and implement the operational aspects of SOA systems. From an ontology perspective, all of
these can be captured by some other element representing the service, a level of indirection that is
critical when not wanting to bind operationally to a particular service endpoint, rather preserving
loose coupling and the ability to switch embodiments as needed. Note that by leveraging the represents
and representedBy properties in this fashion the relatively complex operational interaction pattern
that was described in the 9.6.2 (picking the service, picking an element that performs the service, and
interacting with that chosen element) is additionally encapsulated.

While a service being represented by something else is quite natural, it is harder to imagine what the
service itself might represent. To some degree the fact that a service represents any embodiment of it
has already been captured, only the performs and performedBy properties have been chosen to describe
this rather than the generic represents and representedBy properties. As a consequence, practical
applications of the ontology to have services represent anything is not expected.

10.5.3	 Exemplifying the Difference Between Doing a Task and Performing a Service

The distinction between a human actor performing a task and an element (technology, human actor, or
other) performing a service is important. The human actor doing the task has the responsibility that it
gets done, yet may in fact in many cases leverage some service to achieve that outcome:

—	 John is an instance of HumanActor.

—	 WashWindows is an instance of Task and is done by John.

—	 SoapWater is an instance of Service.

—	 WaterTap is an instance of Element.

—	 WaterTap performs SoapWater.

—	 John uses SoapWater (to do WashWindows).

Note how clearly SoapWater does not do WashWindows, nor does WaterTap do WashWindows.

10.5.4	 Car Wash Example

Joe offers two different services to his customers: a basic wash and a gold wash. This can be instantiated
in the ontology in the following way (subset to the part relevant for these two services):

—	 GoldWash is an instance of Service.

—	 BasicWash is an instance of Service.

—	 CarWash performs both BasicWash and GoldWash.

—	 WashManager represents both BasicWash and GoldWash (i.e. is the interaction point where
customers can order services as well as pay for them).

Note the purposeful use of WashManager representing both services. This is due to Joe deciding that in
his car wash customers are not to interact with the washing machinery directly, rather instead interact
with whomever (human actor) is fulfilling the role of wash manager.

10.6	 The ServiceContract Class
<owl:Class rdf:about="#ServiceContract">
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>

﻿

18� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
</owl:Class>
In many cases, specific agreements are needed in order to define how to use a service. This can either
be because of a desire to regulate such use or can simply be because the service will not function
properly unless interaction with it is done in a certain sequence. A service contract defines the terms,
conditions, and interaction rules that interacting participants agree to (directly or indirectly). A service
contract is binding on all participants in the interaction, including the service itself and the element
that provides it for the particular interaction in question. The concept of service contract is captured by
the ServiceContract OWL class, which is illustrated in Figure 8.

Figure 8 — The ServiceContract Class

10.7	 The interactionAspect and legalAspect Datatype Properties
<owl:DatatypeProperty rdf:about="#interactionAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#legalAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
</owl:DatatypeProperty>

<owl:Class rdf:about="#ServiceContract">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#legalAspect"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#legalAspect"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#interactionAspect"/>
 </owl:onProperty>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>

﻿

© ISO/IEC 2016 – All rights reserved� 19

﻿

ISO/IEC 18384-3:2016(E)

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#interactionAspect"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Service contracts explicitly regulate both the interaction aspects (see the hasContract and isContractFor
properties) and the legal agreement aspects (see the involvedParty and isPartyTo properties) of using
a service. The two types of aspects are formally captured by defining the interactionAspect and
legalAspect datatype properties on the ServiceContract class. Note that the second of these attributes,
the legal agreement aspects, includes concepts such as service-level agreements (SLAs).

If desired, it is possible as an architectural convention to split the interaction and legal aspects into two
different service contracts. Such choices will be up to any application using this ontology.

10.8	 The hasContract and isContractFor Properties
<owl:ObjectProperty rdf:about="#isContractFor">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Service"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasContract">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isContractFor"/>
 </owl:inverseOf>
</owl:ObjectProperty>

<owl:Class rdf:about="#ServiceContract">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isContractFor"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

The hasContract property, and its inverse isContractFor, capture the abstract notion of a service
having a service contract. Anyone wanting to use a service obeys to the interaction aspects (as defined
in the interactionAspect datatype property) of any service contract applying to that interaction. In
that fashion, the interaction aspects of a service contract are context-independent; they capture the
defined or intrinsic ways in which a service may be used.

By definition, any service contract is a contract for at least one service. It is possible that the same
service contract can be a contract for more than one service; for instance, in cases where a group of
services share the same interaction pattern or where a service contract (legally – see the involvesParty
and isPartyTo properties in 10.9) regulates the providing and consuming of multiple services.

10.9	 The involvesParty and isPartyTo Properties
<owl:ObjectProperty rdf:about="#isPartyTo">
 <rdfs:domain rdf:resource="#HumanActor"/>
 <rdfs:range rdf:resource="#ServiceContract"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#involvesParty">

﻿

20� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isPartyTo"/>
 </owl:inverseOf>
</owl:ObjectProperty>

In addition to the rules and regulations that intrinsically apply to any interaction with a service (the
interaction aspect of service contracts captured in the interactionAspect datatype property) there
may be additional legal agreements that apply to certain human actors and their use of services. The
involvesParty property, and its inverse isPartyTo, captures the abstract notion of a service contract
specifying legal obligations between human actors in the context of using the one or more services for
which the service contract is a contract.

While the involvesParty and isPartyTo properties define the relationships to human actors involved
in the service contract, the actual legal obligations on each of these human actors is defined in the
legalAspect datatype property on the service contract. This includes the ability to define who is the
provider and who is the consumer from a legal obligation perspective.

There is a many-to-many relationship between service contracts and human actors. A given human
actor may be party to none, one, or many service contracts. Similarly, a given service contract may
involve none, one, or multiple human actors (none in the case where that particular service contract
only specifies the interactionAspect datatype property). Note that it is important to allow for sourcing
contracts where there is a legal agreement between human actor A and human actor B (both of which
are party to a service contract), yet human actor B has sourced the performing of the service to human
actor C (aka human actor C performs the service in question, not human actor B).

The involvesParty property together with the legalAspect datatype property on ServiceContract
capture not just transient obligations. They include the ability to express “is obliged to at this instant”,
“was obliged to”, and “may in future be obliged to”.

10.10	 The Effect Class
<owl:Class rdf:about="#Effect">
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
</owl:Class>
Interacting with something performing a service has effects. These comprise the outcome of that
interaction, and are how a service (through the element that performs it) delivers value to its consumers.
The concept of effect is captured by the Effect OWL class, which is illustrated in Figure 9.

Figure 9 — The Effect Class

Note that the Effect class purely represents how results or value is delivered to someone interacting
with a service. Any possible internal side-effects are explicitly not covered by the Effect class.

Effect is defined as disjoint with the ServiceInterface class. (The ServiceInterface class is defined later
in this part of ISO/IEC 18384). Interacting with a service through its service interface can have an
outcome or provide a value (an instance of Effect) but the service interface itself does not constitute
that outcome or value.

﻿

© ISO/IEC 2016 – All rights reserved� 21

﻿

ISO/IEC 18384-3:2016(E)

10.11	 The specifies and isSpecifiedBy Properties
<owl:ObjectProperty rdf:about="#specifies">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Effect"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isSpecifiedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#specifies"/>
 </owl:inverseOf>
</owl:ObjectProperty>

<owl:Class rdf: about="#Effect">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf: about="#isSpecifiedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#ServiceContract">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf: about="#specifies"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

While a service intrinsically has an effect every time someone interacts with it, in order to trust the
effect to be something in particular, the effect needs to be specified as part of a service contract. The
specifies property, and its inverse isSpecifiedBy, capture the abstract notion of a service contract
specifying a particular effect as part of the agreement for using a service. Note that the specified effect
can apply to both the interactionAspect datatype property (simply specifying what will happen when
interacting with the service according to the service contract) and the legalAspect datatype property
(specifying a contractually promised effect).

Anyone wanting a guaranteed effect of the interaction with a given service ensures that the desired
effect is specified in a service contract applying to that interaction. By definition, any service contract
specifies at least one effect. In the other direction, an effect is an effect of at least one service contract;
this represents that fact that those effects that are specified by service contracts are only formalized
(and not all intrinsic effects of all services).

10.12	 ServiceContract — Examples

10.12.1	Service-level Agreements

A service-level agreement (SLA) on a service has been agreed by organizations A and B. It is important
to realize that an SLA always has a context of the parties that have agreed to it, involving at a minimum
one legal “consumer” and one legal “provider”. This can be represented in the ontology as follows:

—	 A and B are instances of HumanActor;

—	 Service is an instance of Service;

﻿

22� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

—	 ServiceContract is an instance of ServiceContract;

—	 ServiceContract isContractFor Service;

—	 ServiceContract involvesParty A;

—	 ServiceContract involvesParty B;

—	 The legalAspect datatype property on ServiceContract describes the SLA.

10.12.2	Service Sourcing

Organizations A and B have agreed on B providing certain services for A, yet B wants to source the
actual delivery of those services to third party C. This can be represented in the ontology as follows:

—	 A, B, and C are instances of HumanActor;

—	 Service is an instance of Service;

—	 C provides Service;

—	 ServiceContract is an instance of ServiceContract;

—	 ServiceContract is ContractFor Service;

—	 ServiceContract involvesParty A;

—	 ServiceContract involvesParty B;

—	 The legalAspect datatype property on ServiceContract describes the legal obligation of B to
provide Service for A.

10.12.3	Car Wash Example

See Annex A for the complete Service and ServiceContract aspects of the car wash example.

10.13	 The ServiceInterface Class
<owl:Class rdf:about="#ServiceInterface">
 <owl:disjointWith>
 <owl:Class rdf: about="#Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#Task"/>
 </owl:disjointWith>
</owl:Class>
An important characteristic of services is that they have simple, well-defined interfaces. This makes it
easy to interact with them, and enables other elements to use them in a structured manner. A service
interface defines the way in which other elements can interact and exchange information with a service.
This concept is captured by the ServiceInterface class which is illustrated in Figure 10.

﻿

© ISO/IEC 2016 – All rights reserved� 23

﻿

ISO/IEC 18384-3:2016(E)

Figure 10 — The ServiceInterface Class

The concept of an interface is in general well understood by practitioners, including the notion that
interfaces define the parameters for information going in and out of them when invoked. What differs
from domain to domain is the specific nature of how an interface is invoked and how information is
passed back and forth. Service interfaces are typically, but not necessarily, message-based (to support
loose coupling). Furthermore, service interfaces are always defined independently from any service
implementing them (to support loose coupling and service mediation).

From a design perspective interfaces may have more granular operations or may be composed of other
interfaces, however, this part of ISO/IEC 18384 has been kept at the concept level and does not include
such design aspects in the ontology.

ServiceInterface is defined as disjoint with the Service, ServiceContract, and Effect classes.
Instances of these classes are considered not to define (by themselves) the way in which other elements
can interact and exchange information with a service. Note that that there is a natural synergy between
ServiceInterface and the interactionAspect datatype property on ServiceContract, as the latter
defines any multi-interaction and/or sequencing constraints on how to use a service through interaction
with its service interfaces.

10.14	 The Constraints Datatype Property
<owl:DatatypeProperty rdf:about="#constraints">
 <rdfs:domain rdf:resource="#ServiceInterface"/>
</owl:DatatypeProperty>

<owl:Class rdf:about="#ServiceInterface">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf: about="#constraints"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#constraints"/>
 </owl:onProperty>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

The Constraints datatype property on ServiceInterface captures the notion that there can be
constraints on the allowed interaction such as only certain value ranges allowed on given parameters.
Depending on the nature of the service and the service interface in question these constraints may be
defined either formally or informally (the informal case being relevant at a minimum for certain types
of real-world services).

﻿

24� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

10.15	 The hasInterface and isInterfaceOf Properties
<owl:ObjectProperty rdf:about="#hasInterface">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#ServiceInterface"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf: about="#isInterfaceOf">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasInterface"/>
 </owl:inverseOf>
</owl:ObjectProperty>

<owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf: about="#hasInterface"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
The hasInterface property, and its inverse isInterfaceOf, capture the abstract notion of a service
having a particular service interface.

In one direction, any service has at least one service interface; anything else would be contrary to
the definition of a service as a representation of a set of activities that has a specified outcome and
is a “black box” to its consumers. In the other direction, there can be service interfaces that are not
yet interfaces of any defined services. Also, the same service interface can be an interface of multiple
services. The latter does not mean that these services are the same, nor even that they have the same
effect, it only means that it is possible to interact with all these services in the manner defined by the
service interface in question.

10.16	 The InformationType Class
<owl:Class rdf: about="#InformationType">
 <owl:disjointWith>
 <owl:Class rdf: about="#Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceContract"/>
 </owl:disjointWith>
</owl:Class>

A service interface can enable another element to give information to or receive information from a
service (when it uses that service), specifically the types of information given or received. The concept
of information type is captured by the InformationType OWL class, which is illustrated in Figure 11.

Figure 11 — The InformationType Class

In any concrete interaction through a service interface, the information types on that interface are
instantiated by information items, yet for the service interface itself it is the types that are important.

﻿

© ISO/IEC 2016 – All rights reserved� 25

﻿

ISO/IEC 18384-3:2016(E)

Note that the constraints datatype property on ServiceInterface, if necessary, can be used to express
constraints on allowed values for certain information types.

10.17	 The hasInput and isInputAt Properties
<owl:ObjectProperty rdf: about="#hasInput">
 <rdfs:domain rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf: about="#isInputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf: about="#hasInput"/>
 </owl:inverseOf>
</owl:ObjectProperty>

The hasInput property, and its inverse isInputAt, capture the abstract notion of a particular type of
information being given when interacting with a service through a service interface.

Note that there is a many-to-many relationship between service interfaces and input information
types. A given information type may be input at many service interfaces or none at all. Similarly, a given
service interface may have many information types as input or none at all. It is important to realize that
some services may have only inputs (triggering an asynchronous action without a defined response)
and other services may have only outputs (elements performing these services execute independently
yet may provide output that is used by other elements).

10.18	 The hasOutput and isOutputAt Properties
<owl:ObjectProperty rdf: about="#hasOutput">
 <rdfs:domain rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf: about="#isOutputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf: about="#hasOutput"/>
 </owl:inverseOf>
</owl:ObjectProperty>

The hasOutput property, and its inverse isOutputAt, capture the abstract notion of a particular type
of information being received when interacting with a service through a service interface.

Note that there is a many-to-many relationship between service interfaces and output information
types. A given information type may be output at many service interfaces or none at all. Similarly, a
given service interface may have many information types as output or none at all. It is important to
realize that some services may have only inputs (triggering an asynchronous action without a defined
response) and other services may have only outputs (elements performing these services execute
independently yet may provide output that is used by other elements).

10.19	 Examples

10.19.1	Interaction Sequencing

A service contract on a service expresses that the services interfaces on that services are used in a
certain order.

—	 Service is an instance of Service.

—	 ServiceContract is an instance of ServiceContract.

—	 ServiceContract isContractFor Service.

﻿

26� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

—	 X is an instance of ServiceInterface.

—	 X isInterfaceOf Service.

—	 Y is an instance of ServiceInterface.

—	 Y isInterfaceOf Service.

—	 The interactionAspect datatype property on ServiceContract describes that X is used before Y may
be used.

10.19.2	Car wash example

See Annex A for the complete ServiceInterface aspect of the car wash example.

11	Composition and its Subclasses

11.1	 Overview

The notion of Composition is a core concept of SOA. Services can be composed of other services.
Processes are composed of human actors, tasks, and possibly services. Experienced SOA practitioners
intuitively apply composition as an integral part of architecting, designing, and realizing SOA systems;
in fact, any well-structured SOA environment is intrinsically composite in the way services and
processes support business capabilities. What differs from practitioner to practitioner is the exact
nature of the composition, the composition pattern being applied.

This Clause describes the following classes of the ontology:

Composition (as a subclass of System)

ServiceComposition (as a subclass of Composition)

Process (as a subclass of Composition)

In addition, it defines the following datatype property:

compositionPattern

11.2	 The Composition Class
<owl:Class rdf:about="#Composition">
 <rdfs:subClassOf>
 <owl:Class rdf: about="#System"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf: about="#Task"/>
 </owl:disjointWith>
</owl:Class>
A composition is the result of assembling a collection of things for a particular purpose. Note in particular
the act of composing has been purposefully distinguished from the resulting composition as a thing,
and that it is in the latter sense the concept of composition is used here. The concept of composition is
captured by the Composition OWL class, which is illustrated in Figure 12.

﻿

© ISO/IEC 2016 – All rights reserved� 27

﻿

ISO/IEC 18384-3:2016(E)

Figure 12 — The Composition Class

Being intrinsically (also) an organized collection of other, simpler things, the Composition class is a
subclass of the System class. While a composition is always also a system, a system is not necessarily
a composition in that it is not necessarily a result of anything, note here the difference between a
system producing a result and the system itself being a result. A perhaps more tangible difference
between a system and a composition is that the latter has associated with it a specific composition
pattern that renders the composition (as a whole) as the result when that composition pattern is
applied to the elements used in the composition. One implication of this is that there is not a single
member of a composition that represents (as an element) that composition as a whole; in other words,
the composition itself is not one of the things being assembled. On the other hand, composition is in fact
a recursive concept (as are all subclasses of System), being a system, a composition is also an element
which means that it can be used by a higher-level composition.

In the context of the SOA ontology, only functional compositions that belong to the SOA domain
are considered in detail. Note that a fully described instance of Composition is by its nature a uses
relationship to at least one instance of Element. (It need not necessarily have more than one as the
composition pattern applied may be, for instance, simply a transformation.) Again (as for System) it is
important to realize that a composition can use elements outside its own boundary.

Since Composition is a subclass of Element, all compositions have a boundary and are opaque to an
external observer (black box view). The composition pattern in turn is the internal view point (white box
view) of a composition. As an example, for the notion of a service composition this would correspond to
the difference between seeing the service composition as an element providing a (higher-level) service
or seeing the service composition as a composite structure of (lower-level) services.

11.3	 The compositionPattern Datatype Property

11.3.1	 Overview

<owl:DatatypeProperty rdf:about="#compositionPattern">
 <rdfs:domain rdf:resource="#Composition"/>
</owl:DatatypeProperty>

<owl:Class rdf:about="#Composition">
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</
owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf: about="#compositionPattern"/>
 </owl:onProperty>
 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
 <owl:Restriction>

﻿

28� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 <owl:onProperty>
 <owl:DatatypeProperty rdf: about="#compositionPattern"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</
owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

As discussed in 11.2, any composition has associated with it a specific composition pattern, that
pattern describing the way in which a collection of elements is assembled to a result. The concept of
a composition pattern is captured by the compositionPattern datatype property. Note that even
though certain kinds of composition patterns are of special interest within SOA (see 11.3.2), the
compositionPattern data type property may take any value as long as that value describes how to
assemble the elements used by the composition with which it is associated.

11.3.2	 The Orchestration Composition Pattern

One kind of composition pattern that has special interest within SOA is an Orchestration. In an
orchestration (a composition whose composition pattern is an orchestration), there is one particular
element used by the composition that oversees and directs the other elements. Note that the element that
directs an orchestration by definition is different than the orchestration (Composition instance) itself.

Think of an orchestrated executable workflow as an example of an orchestration. The workflow
construct itself is one of the elements being used in the composition, yet it is different from the
composition itself, the composition itself is the result of applying (executing) the workflow on the
processes, human actors, services, etc. that are orchestrated by the workflow construct.

A non-IT example is the foreman of a road repair crew. If the foreman chooses to exert direct control over
the tasks done by his crew, then the resulting composition becomes an orchestration (with the foreman
as the director and provider of the composition pattern). Note that under other circumstances, with a
different team composition model, a road repair crew can also act as a collaboration or a choreography
(see 11.3.3 and 11.3.4 for definitions of collaboration and choreography).

As the last example clearly shows, using an orchestration composition pattern is not a guarantee that
“nothing can go wrong”. That would, in fact, depend on the orchestration director’s ability to handle
exceptions.

11.3.3	 The Choreography Composition Pattern

Another kind of composition pattern that has special interest within SOA is a Choreography. In a
choreography (a composition whose composition pattern is a choreography) the elements used by
the composition interact in a non-directed fashion, yet with each autonomous member knowing and
following a predefined pattern of behaviour for the entire composition.

Think of a process model as an example of choreography. The process model does not direct the elements
within it, yet does provide a predefined pattern of behaviour that each such element is expected to
conform to when “executing”.

11.3.4	 The Collaboration Composition Pattern

A third kind of composition pattern that has special interest within SOA is a Collaboration. In
collaboration (a composition whose composition pattern is a collaboration) the elements used by
the composition interact in a non-directed fashion, each according to their own plans and purposes
without a predefined pattern of behaviour. Each element simply knows what it has to do and does it
independently, initiating interaction with the other members of the composition as applicable on its
own initiative. This means that there is no overall predefined “flow” of the collaboration, though there
may be a run-time “observed flow of interactions”.

﻿

© ISO/IEC 2016 – All rights reserved� 29

﻿

ISO/IEC 18384-3:2016(E)

A good example of collaboration is a work meeting. There is no script for how the meeting will unfold
and only after the meeting has concluded can the sequence of interactions that actually occurred be
described.

﻿

30� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

11.4	 The orchestrates and orchestratedBy Properties
<owl:ObjectProperty rdf:about="#orchestratedBy">
 <rdfs:domain rdf:resource="#Composition"/>
 <rdfs:range rdf:resource="#Element"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#orchestrates">
 <owl:inverseOf>
 <owl:ObjectProperty rdf: about="#orchestratedBy"/>
 </owl:inverseOf>
</owl:ObjectProperty>

<owl:Class rdf:about="#Composition">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</
owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf: about="#orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</
owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf: about="#orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Element">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</
owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf: about="#orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</
owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

An orchestration has one particular element that oversees and directs the other elements used by the
composition. This type of relationship is important enough that the abstract notion is captured in the
orchestrates property and its inverse orchestratedBy.

In one direction, a composition has at most one element that orchestrates it, and the cardinality can only
be one if in fact the composition pattern of that composition is an orchestration. In the other direction,
an element can orchestrate at most one composition which then has an orchestration as its composition
pattern.

Note that in practical applications of the ontology, even though Service is a subclass of Element, a
service (as a purely logical representation) is not expected to orchestrate a composition.

﻿

© ISO/IEC 2016 – All rights reserved� 31

﻿

ISO/IEC 18384-3:2016(E)

11.5	 The ServiceComposition Class
<owl:Class rdf: about="#ServiceComposition">
 <rdfs:subClassOf>
 <owl:Class rdf: about="#Composition"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
</owl:Class>
A key SOA concept is the notion of service composition, the result of assembling a collection of services
in order to perform a new higher-level service. The concept of service composition is captured by the
ServiceComposition OWL class, which is illustrated in Figure 13.

Figure 13 — The ServiceComposition Class

As a service composition is the result of assembling a collection of services, ServiceComposition is
naturally a subclass of Composition.

A service composition may, and typically will, add logic (or even “code”) via the composition pattern.
Note that a service composition is not the new higher-level service itself (due to the System and Service
classes being disjoint); rather it performs (as an element) that higher-level service.

11.6	 The Process Class
<owl:Class rdf: about="#Process">
 <rdfs:subClassOf>
 <owl:Class rdf: about="#Composition"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceInterface"/>
 </owl:disjointWith>
</owl:Class>

Another key SOA concept is the notion of process. A process is a composition whose elements are
composed into a sequence or flow of activities and interactions with the objective of carrying out certain
work. This definition is consistent with, for instance, the Business Process Modeling Notation (BPMN)
2.0 definition of a process. (see Reference [4]). The concept of process is captured by the Process OWL
class, which is illustrated in Figure 14.

﻿

32� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

Figure 14 — The Process Class

Elements in process compositions can be things like human actors, tasks, services, other processes, etc.
A process always adds logic via the composition pattern, the result is more than the parts. According to
their collaboration pattern, processes can be as follows:

—	 Orchestrated: When a process is orchestrated in a Business Process Management System, then
the resulting IT artifact is in fact an orchestration; i.e. it has an orchestration collaboration pattern.
This type of process is often called a “Process Orchestration”.

—	 Choreographed: A process model representing a defined pattern of behaviour is often called a
“Process Choreography”.

—	 Collaborative: No (pre)defined pattern of behaviour (model); the process represents observed
(executed) behaviour.

11.7	 Service Composition and Process Examples

11.7.1	 Simple Service Composition Example

Using a service composition example, services A and B are instances of Service and the composition of
A and B is an instance of ServiceComposition (that uses A and B):

—	 A and B are instances of Service,

—	 X is an instance of ServiceComposition, and

—	 X uses both A and B (composes them according to its service composition pattern).

Note that there are various ways in which the service composition pattern can compose A and B, all
of which are relevant in one situation or another. For example, interfaces of X may or may not include
some subset of the interfaces of A and B. Furthermore, the interfaces of A and B may or may not also
be (directly) invocable without going through X, that is, a matter of the service contracts and/or access
policies apply to the A and B. Finally, X may also use other elements that are not services at all (examples
are composition code, adaptors, etc.).

11.7.2	 Process Example

Using a process example, tasks T1 and T2 are instances of Task, roles R1 and R2 are instances of Element,
and the composition of T1, T2, R1, and R2 is an instance of Process (that uses T1, T2, R1, and R2):

—	 T1 and T2 are instances of Task,

—	 R1 and R2 are instances of Element,

—	 Y is an instance of Process, and

﻿

© ISO/IEC 2016 – All rights reserved� 33

﻿

ISO/IEC 18384-3:2016(E)

—	 Y uses all of T1, T2, R1, and R2 (composes them according to its process composition pattern).

11.7.3	 Process and Service Composition Example

Elaborating on the process example in 11.7.2, if T1 is done using service S then:

—	 S is an instance of Service, and

—	 T1 uses S.

Note that depending on the particular design approach chosen (and the resulting composition pattern),
Y may or may not use S directly. This depends on whether Y carries the binding between T1 and S or
whether that binding is encapsulated in T1.

11.7.4	 Car Wash Example

See Annex A for the Process aspect of the car wash example.

12	 Policy

12.1	 Overview

Policies, the human actors defining them, and the things that they apply to are important aspects of any
system, certainly also SOA systems with their many different interacting elements. Policies can apply
to any element in a system. The concept of Policy is captured by the Policy class and its relationships to
the HumanActor and Thing classes.

This Clause describes the following classes of the ontology:

Policy

In addition, it defines the following properties:

appliesTo and isSubjectTo

setsPolicy and isSetBy

12.2	 The Policy Class
<owl:Class rdf:about="#Policy">
 <owl:disjointWith>
 <owl:Class rdf: about="#InformationType"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#Element"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#Event"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceContract"/>
 </owl:disjointWith>
</owl:Class>

A policy is a statement of direction that a human actor may intend to follow or may intend that another
human actor should follow. Knowing the policies that apply to something makes it easier and more

﻿

34� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

transparent to interact with that something. The concept of policy is captured by the Policy OWL class,
which is illustrated in Figure 15.

Figure 15 — The Policy Class

Policy as a concept is generic and has relevance outside the domain of SOA. For the purposes of this
SOA ontology, it has not been necessary or relevant to restrict the generic nature of the Policy class
itself. The relationships between Policy and HumanActor are of course bound by the SOA-specific
restrictions that have been applied on the definition of HumanActor.

From a design perspective, policies may have more granular parts or may be expressed and made
operational through specific rules. This part of ISO/IEC 18384 stays at the concept level and does not
include such design aspects in the ontology.

Policy is distinct from all other concepts in this ontology; hence the Policy class is defined as disjoint
with all other defined classes. In particular, Policy is disjoint with ServiceContract. While policies
may apply to service contracts, such as security policies on who may change a given service contract,
or conversely be referred to by service contracts as part of the terms, conditions, and interaction rules
that interacting participants agree to, service contracts are themselves not policies as they do not
describe an intended course of action.

12.3	The appliesTo and isSubjectTo Properties
<owl:ObjectProperty rdf: about="#appliesTo">
 <rdfs:domain rdf:resource="#Policy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf: about="#isSubjectTo">
 <owl:inverseOf>
 <owl:ObjectProperty rdf: about="#appliesTo"/>
 </owl:inverseOf>
</owl:ObjectProperty>

Policies can apply to things other than elements; in fact, policies can apply to anything at all, including
other policies. For instance, a security policy might specify which actors have the authority to change
some other policy. The appliesTo property, and its inverse isSubjectTo, capture the abstract notion
that a policy can apply to any instance of Thing. Note specifically that Element is a subclass of Thing,
hence policies by inference can apply to any instance of Element.

In one direction, a policy can apply to zero (in the case where a policy has been formulated but not
yet explicitly applied to anything), one, or more instances of Thing. Note that having a policy apply
to multiple things does not mean that these things are the same, only that they are (partly) regulated
by the same intent. In the other direction, an instance of Thing may be subject to zero, one, or more
policies. Note that where multiple policies apply to the same instance of Thing this is often because the
multiple policies are from multiple different policy domains (such as security and governance).

The SOA ontology does not attempt to enumerate different policy domains; such policy-focused details
are deemed more appropriate for a policy ontology. It is worth pointing out that a particular policy
ontology may also restrict (if desired) the kinds of things that policies can apply to.

12.4	 The setsPolicy and isSetBy Properties
<owl:ObjectProperty rdf:about="#setsPolicy">
<rdfs:domain rdf:resource="#HumanActor"/>

﻿

© ISO/IEC 2016 – All rights reserved� 35

﻿

ISO/IEC 18384-3:2016(E)

<rdfs:range rdf:resource="#Policy"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf: about="#isSetBy">
<owl:inverseOf>
<owl:ObjectProperty rdf: about="#setsPolicy"/>
</owl:inverseOf>
</owl:ObjectProperty>

The setsPolicy property, and its inverse isSetBy, capture the abstract notion that a policy can be set by
one or more human actors.

In one direction, a policy can be set by zero (in the case where actors setting the policy by choice are
not defined or captured), one, or more human actors. Note specifically that some policies are set by
multiple human actors in conjunction, meaning that all these human actors need to discuss and agree
on the policy before it can take effect. A real-world example would be two parents in conjunction
setting policies for acceptable child behaviour. In the other direction, a human actor may set (or be part
of setting) multiple policies.

The SOA ontology purposefully separates the setting of the policy itself and the application of the policy
to one or more instances of Thing. In some cases, these two acts may be inseparably bound together,
yet in other cases, they are definitely not. One such example is an overall compliance policy that is
formulated at the corporate level yet applied by the compliance officer in each line of business.

Also, while a particular case of interest for this ontology is that where the provider of a service has
a policy for the service, a policy for a service is not necessarily owned by the provider. For example,
government food and hygiene regulations (a policy that is law) cover restaurant services independently
of anything desired or defined by the restaurant owner.

12.5	 Examples

12.5.1	 Car Wash Example

See A.5 for the Policy aspect of the car wash example.

13	 Event

13.1	 Overview

Events and the elements that generate or respond to them are important aspects of any event emitting
system. SOA systems are in fact often event emitting, hence event is defined as a concept in the SOA
ontology.

This Clause describes the following classes of the ontology:

Event

In addition, it defines the following properties:

generates and generatedBy

respondsTo and respondedToBy

13.2	 The Event Class
<owl:Class rdf:about="#Event">
 <owl:disjointWith>
 <owl:Class rdf: about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceContract"/>

﻿

36� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf: about="#ServiceInterface"/>
 </owl:disjointWith>
</owl:Class>

An event is something that happens, to which an element may choose to respond. Events can be
responded to by any element. Similarly, events may be generated (emitted) by any element. Knowing
the events generated or responded to by an element makes it easier and more transparent to interact
with that element. Note that some events may occur whether generated or responded to by an element
or not. The concept of an event is captured by the Event OWL class which is illustrated in Figure 16.

Figure 16 — The Event Class

Event as a concept is generic and has relevance to the domain of SOA as well as many other domains. For
the purposes of this ontology, Event is used in its generic sense.

From a design perspective, events may have more granular parts or may be expressed and made
operational through specific syntax or semantics. This part of ISO/IEC 18384 stays at the concept level
and does not include such design aspects in the ontology.

13.3	 The generates and generatedBy Properties
<owl:ObjectProperty rdf: about="#generates">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf: about="#generatedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf: about="#generates"/>
 </owl:inverseOf>
</owl:ObjectProperty>

Events can, but need not necessarily, be generated by elements. The generates property, and its inverse
generatedBy, captures the abstract notion that an element generates an event.

Note that the same event may be generated by many different elements. Similarly, the same element
may generate many different events.

13.4	 The respondsTo and respondedToBy Properties
<owl:ObjectProperty rdf: about="#respondsTo">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
</owl:ObjectProperty>

﻿

© ISO/IEC 2016 – All rights reserved� 37

﻿

ISO/IEC 18384-3:2016(E)

<owl:ObjectProperty rdf: about="#respondedToBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf: about="#respondsTo"/>
 </owl:inverseOf>
</owl:ObjectProperty>

Events can, but need not necessarily, be responded to by elements. The respondsTo property and its
inverse respondedToBy, capture the abstract notion that an element responds to an event.

The same event may be responded to by many different elements. Similarly, the same element may
respond to many different events.

﻿

38� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

Annex A
(informative)

Complete Car Wash Example

A.1	 General

This Annex contains the complete car wash example that has been used in parts throughout the
definitional clauses of the ontology.

A.2	 The Organizational Aspect

Joe the owner chooses to organize his business into two organizational units: Administration and
CarWash:

—	 CarWashBusiness is an instance of both HumanActor and System,

—	 Administration is an instance of HumanActor (organizational unit),

—	 CarWash is an instance of HumanActor (organizational unit),

—	 CarWashBusiness uses (has organizational units) Administration and CarWash,

—	 AdministrativeSystem is an instance of System,

—	 Administration represents AdministrativeSystem,

—	 CarWashSystem is an instance of System, and

—	 CarWash represents CarWashSystem.

And using well-defined roles within each organization:

—	 Owner (role) is an instance of Element and is used by AdministrativeSystem,

—	 Joe is an instance of HumanActor and is represented by (has role) Owner,

—	 Secretary (role) is an instance of Element and is used by AdministrativeSystem,

—	 Mary is an instance of HumanActor and is represented by (has role) Secretary,

—	 PreWashGuy (role) is an instance of Element and is used by CarWashSystem,

—	 John is an instance of HumanActor and is represented by (has role) PreWashGuy,

—	 WashManager (role) is an instance of Element and is used by CarWashSystem,

—	 WashOperator (role) is an instance of Element and is used by CarWashSystem, and

—	 Jack is an instance of HumanActor and is represented by (has roles) both WashManager and
WashOperator.

﻿

© ISO/IEC 2016 – All rights reserved� 39

﻿

ISO/IEC 18384-3:2016(E)

Figure A.1 — Car Wash Example — The Organizational Aspect

A.3	 The Washing Services

Joe offers two different services to his customers: a basic wash and a gold wash:

—	 GoldWash is an instance of Service,

—	 BasicWash is an instance of Service,

—	 CarWash performs both BasicWash and GoldWash, and

—	 WashManager represents both BasicWash and GoldWash (i.e. it is the interaction point where
customers can order services as well as pay for them).

In return for payment, Joe’s BasicWash service cleans the car of customer Judy:

—	 Judy is an instance of HumanActor (the customer),

—	 BasicWashContract is an instance of ServiceContract,

—	 BasicWash has contract BasicWashContract,

—	 CleanCar is an instance of Effect,

—	 BasicWashContract specifies CleanCar as its effect,

—	 BasicWashContract involves parties CarWashBusiness and Judy and specifies that Judy (as the legal
consumer) pays CarWashBusiness (as the legal provider) $10 for the one consumption of BasicWash
with the effect of (one) CleanCar. Note that BasicWash is actually performed by CarWash and not by
the legal provider CarWashBusiness, in this particular example CarWash happens to be a member of
CarWashBusiness but such need not always be the case, CarWash could have been some third party
provider, and

﻿

40� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

—	 Judy uses WashManager (in order to invoke the BasicWash service).

Note that in this example Judy does not interact with the (abstract) BasicWash service directly, rather
she interacts with the WashManager that represents the service. This is due to Joe deciding that in his
car wash customers are not to interact with the washing machinery directly.

Figure A.2 — Car Wash Example — The Washing Services

A.4	 Interfaces to the Washing Services

The way to interact with the car wash services is simple for the customer; he or she simply gives money
to the wash manager and asks to have to the car washed using one of the two available wash services.
Due to the fact that Joe has decided to interpose the wash manager between the customer and the
washing machine, the customer actually never interacts with the wash services themselves. A proxy
service provided by the wash manager could have been formally defined, but that level of formality in
this real-world example has been omitted.

﻿

© ISO/IEC 2016 – All rights reserved� 41

﻿

ISO/IEC 18384-3:2016(E)

The wash manager in turn does interact with the wash services through their interfaces defined as
follows:

—	 WashingMachineInterface is an instance of ServiceInterface;

—	 TypeOfWash is an instance of InformationType;

—	 WashingMachineInterface has input TypeOfWash;

—	 BasicWash has interface WashingMachineInterface;

—	 GoldWash has interface WashingMachineInterface.

Note how both washing services in fact have the same service interface. Even though Joe has chosen to
offer basic wash and gold wash as two different services, both are in effect done by the same washing
machine (one simply has to choose the type of wash when initializing the washing machine).

A.5	 The Washing Processes

An important part of the car wash system is the car washing processes itself are as follows:

—	 AutomatedCarWashProcess is an instance of both Process and Orchestration;

—	 Wash is an instance of Task and is used by AutomatedCarWashProcess;

—	 Dry is an instance of Task and is used by AutomatedCarWashProcess;

—	 AutomatedCarWash is an instance of Element (the automated washing machine) and represents
AutomatedCarWashProcess (encapsulates the process) as well as directs AutomatedCarWashProcess;

—	 CarWashProcess is an instance of Process and is used by (part of) CarWashSystem (no need to create
an explicit building block that is opaque);

—	 AutomatedCarWash is used by CarWashProcess (automated activity in the process);

—	 WashWindows is an instance of Task and is done by John;

—	 PreWash is an instance of Element, represents WashWindows, and is used by CarWashProcess (logical
activity in the process);

—	 PrewashGuy is a member of CarWashProcess (role in the process);

—	 PushWashButton is an instance of Task and is done by Jack;

—	 InitiateAutomatedWash is an instance of Element, represents PushWashButton, and is used by
CarWashProcess (logical activity in the process);

—	 WashOperator is a member of CarWashProcess (role in the process).

﻿

42� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

Figure A.3 — Car Wash Example — The Washing Processes

A.5.1	 The Washing Policies

Joe sets a payment up-front policy for the washing services defines as follows:

—	 PaymentUpFront is an instance of both Policy;

—	 PaymentUpFront is set by Joe;

—	 PaymentUpFront applies to both GoldWash and BasicWash.

Note how the PaymentUpFront policy enhances the service contract BasicWashContract. While
BasicWashContract only specifies that Judy has to pay $10 for one consumption of the BasicWash service,
the PaymentUpFront policy makes it specific that payment has to happen up-front. One of the advantages
of separating policy from service contract is that the payment policy can be changed independently of
the service contract. For instance, at some later point in time Joe may decide that recurring customers
need not pay up-front, and can institute this change in policy without changing anything else related to
CarWashBusiness.

﻿

© ISO/IEC 2016 – All rights reserved� 43

﻿

ISO/IEC 18384-3:2016(E)

Annex B
(informative)

Internet Purchase Example

Jill is purchasing a new TV on the Internet through an online sales site:

—	 Jill is an instance of Actor (person).

—	 PurchaseTV is an instance of Task.

—	 Jill does PurchaseTV.

—	 BuyTVOnline is an instance of Service.

—	 PurchaseTV uses BuyTVOnline.

OnlineTVSales is the company that is selling TVs:

—	 OnlineTVSales is an instance of Actor (organization).

—	 BuyTVOnlineContract is an instance of ServiceContract (and describes how to interact with
BuyTVOnline as well as the legal contract between TV buyer and OnlineTVSales).

—	 BuyTVOnline has contract BuyTVOnlineContract.

—	 OnlineTVSales is party to BuyTVOnlineContract.

—	 Jill is party to BuyTVOnlineContract.

The online site is implemented using web site software:

—	 OnlineSalesComponent is an instance of Element.

—	 OnlineSalesComponent performs OnlineTVSales.

—	 SelectWhatToBuyComponent is an instance of Element.

—	 SelectWhatToBuyService is an instance of Service.

—	 SelectWhatToBuyComponent performs SelectWhatToBuyService.

—	 PayComponent is an instance of Element.

—	 PayService is an instance of Service.

—	 PayComponent performs PayService.

—	 OnlineSalesComponent is also an instance of ServiceComposition.

—	 OnlineSalesComponent uses SelectWhatToBuyService and PayService.

To complete the purchase transaction, Jill needs to pay for the purchase and then the TV will be
delivered:

—	 PayForTV is an instance of Task.

—	 Jill does PayForTV.

—	 PayForTV uses BuyTVOnline.

﻿

44� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

—	 DeliverTV is an instance of Task.

—	 OnlineTVSales does DeliverTV.

—	 OnlineTVSalesProcess is an instance of Process.

—	 OnlineTVSalesProcess uses Jill, OnlineTVSales, PurchaseTV, PayForTV, and DeliverTV.

﻿

© ISO/IEC 2016 – All rights reserved� 45

﻿

ISO/IEC 18384-3:2016(E)

Annex C
(normative)

The OWL Definition of the SOA Ontology

The OWL ontology is available online at: http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

The Ontology is reproduced below.

<?xml version="1.0"?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.semanticweb.org/ontologies/2010/01/core-soa.owl#"
 xml:base="http://www.semanticweb.org/ontologies/2010/01/core-soa.owl"
>

 <!-- ontology -->
 <owl:Ontology rdf:about=""/>
 <!-- classes -->

 <owl:Class rdf:about="#Event">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#InformationType">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Effect"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#ServiceComposition">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Composition"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#Effect">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>

﻿

46� © ISO/IEC 2016 – All rights reserved

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

﻿

ISO/IEC 18384-3:2016(E)

 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#InformationType"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isSpecifiedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Task">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Composition"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#System">
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>

﻿

© ISO/IEC 2016 – All rights reserved� 47

﻿

ISO/IEC 18384-3:2016(E)

 </owl:Class>

 <owl:Class rdf:about="#Service">
 <owl:disjointWith>
 <owl:Class rdf:about="#System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInterface"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Policy">
 <owl:disjointWith>
 <owl:Class rdf:about="#InformationType"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Element"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Event"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#HumanActor">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#Composition">
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>

﻿

48� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#System"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#compositionPattern"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#compositionPattern"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#ServiceInterface">
 <owl:disjointWith>
 <owl:Class rdf:about="#Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceComposition"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Process"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Event"/>
 </owl:disjointWith>
 <rdfs:subClassOf>

﻿

© ISO/IEC 2016 – All rights reserved� 49

﻿

ISO/IEC 18384-3:2016(E)

 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#constraints"/>
 </owl:onProperty>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#constraints"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Element">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#ServiceContract">
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceComposition"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Process"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Event"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#InformationType"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

﻿

50� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 <owl:DatatypeProperty rdf:about="#legalAspect"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#legalAspect"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#interactionAspect"/>
 </owl:onProperty>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#interactionAspect"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isContractFor"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#specifies"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Process">
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#ServiceInterface"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Composition"/>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- object properties -->

 <owl:ObjectProperty rdf:about="#isPartyTo">
 <rdfs:domain rdf:resource="#HumanActor"/>
 <rdfs:range rdf:resource="#ServiceContract"/>
 </owl:ObjectProperty>

﻿

© ISO/IEC 2016 – All rights reserved� 51

﻿

ISO/IEC 18384-3:2016(E)

 <owl:ObjectProperty rdf:about="#involvesParty">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isPartyTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestratedBy">
 <rdfs:domain rdf:resource="#Composition"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestrates">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#orchestratedBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isContractFor">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasContract">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isContractFor"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#setsPolicy">
 <rdfs:domain rdf:resource="#HumanActor"/>
 <rdfs:range rdf:resource="#Policy"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isSetBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#setsPolicy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#generates">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#generatedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#generates"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#represents">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#representedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#represents"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasInput">
 <rdfs:domain rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isInputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasInput"/>
 </owl:inverseOf>

﻿

52� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#doneBy">
 <rdfs:domain rdf:resource="#Task"/>
 <rdfs:range rdf:resource="#HumanActor"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#does">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#specifies">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Effect"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isSpecifiedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#specifies"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#appliesTo">
 <rdfs:domain rdf:resource="#Policy"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isSubjectTo">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#appliesTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasInterface">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#ServiceInterface"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isInterfaceOf">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasInterface"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#respondsTo">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#respondedToBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#respondsTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#performs">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#performedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#performs"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#uses">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

﻿

© ISO/IEC 2016 – All rights reserved� 53

﻿

ISO/IEC 18384-3:2016(E)

 <owl:ObjectProperty rdf:about="#usedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#uses"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasOutput">
 <rdfs:domain rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isOutputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasOutput"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <!-- datatype properties -->

 <owl:DatatypeProperty rdf:about="#legalAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#constraints">
 <rdfs:domain rdf:resource="#ServiceInterface"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#compositionPattern">
 <rdfs:domain rdf:resource="#Composition"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#interactionAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 </owl:DatatypeProperty>

</rdf:RDF>

﻿

54� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

Annex D
(informative)

Class Relationship Matrix

This Annex contains a class relationship matrix that illustrates the class-to-class relationships intrinsic
in the OWL definitions of the SOA ontology. The matrix is deterministically derived from the ontology
OWL definitions. Each row X and each column Y corresponds to an OWL class. A relation appears in cell
(X,Y), if and only if, class X is part of the domain and class Y is part of the range of the corresponding
OWL property. Note that this means that datatype properties (which do not have a range) are not
included in the class relationship matrix.

As outlined in the body of the document, there are four relationships in the table (plus their inverses
and sub-classed derivatives) that are technically allowed according to the OWL definitions, but would
not be expected to occur in a practical application of the ontology. Specifically, services are not expected
to perform services, services are not expected to use elements (directly), services are not expected to
represent elements, and services are not expected to orchestrate compositions, all due to the Service
class being defined as a logical representation of a set of activitiesy; see 10.3, 10.5.1, 10.5.2 and 11.3.2
for details.

﻿

© ISO/IEC 2016 – All rights reserved� 55

﻿

ISO/IEC 18384-3:2016(E)
﻿

Ta
bl
e
D
.1

El

em
en

t
Sy

st
em

Se
rv

ic
e

H
um

an

Ac
to

r
Ta

sk
Co

m
po

si
-

ti
on

Pr
oc

es
s

Se
rv

ic
e

co
m

po
si

-
ti

on

Se
rv

ic
e

co
nt

ra
ct

Ef
fe

ct
Se

rv
ic

e
in

te
rf

ac
e

In
fo

rm
a-

ti
on

ty

pe

Ev
en

t
Po

lic
y

T
hi

ng

El
em

en
t

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

Sy
st

em
us

es

us
ed

By

re
pr

es
en

ts

re
pr

es
en

t-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

Se
rv

ic
e

Us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

pe
rf

or
m

ed
-

By

Us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
ed

-
By

or

ch
es

-
tr

at
es

ha
sC

on
-

tr
ac

t

ha
sI

nt
er

-
fa

ce

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

H
um

an
 A

ct
or

Us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

do

es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

is
Pa

rt
yT

o

ge
ne

r-
at

es

re
sp

on
d-

sT
o

se
ts

Po
l-

ic
y

is
Su

b-
je

ct
To

Ta
sk

Us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

do

ne
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

Co
m

po
si

tio
n

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

or
ch

es
tr

at
-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

56� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)
﻿

El

em
en

t
Sy

st
em

Se
rv

ic
e

H
um

an

Ac
to

r
Ta

sk
Co

m
po

si
-

ti
on

Pr
oc

es
s

Se
rv

ic
e

co
m

po
si

-
ti

on

Se
rv

ic
e

co
nt

ra
ct

Ef
fe

ct
Se

rv
ic

e
in

te
rf

ac
e

In
fo

rm
a-

ti
on

ty

pe

Ev
en

t
Po

lic
y

T
hi

ng

Pr
oc

es
s

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

or
ch

es
tr

at
-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

Se
rv

ic
e

Co
m

po
-

si
tio

n
us

es

us
ed

By

re
pr

es
en

ts

re
pr

es
en

t-
ed

By

or
ch

es
tr

at
-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

pe

rf
or

m
s

or
ch

es
tr

at
-

ed
By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

us
es

us

ed
By

re

pr
es

en
ts

re

pr
es

en
t-

ed
By

or

ch
es

-
tr

at
es

or

ch
es

tr
at

-
ed

By

ge
ne

r-
at

es

re
sp

on
d-

sT
o

is
Su

b-
je

ct
To

Se
rv

ic
e

Co
n-

tr
ac

t

is

Co
nt

ra
ct

-
Fo

t
in

vo
lv

es
-

Pa
rt

y

sp
ec

i-
fie

s

is
Su

b-
je

ct
To

Ef
fe

ct

is

Sp
ec

i-
fie

dB
y

is
Su

b-
je

ct
To

Se
rv

ic
e

In
te

r-
fa

ce

is

In
te

rf
a-

ce
O

f

ha

sI
np

ut

ha
sO

ut
-

pu
t

is

Su
b-

je
ct

To

In
fo

rm
at

io
n

Ty
pe

is
In

pu
tA

t
is

O
ut

pu
-

tA
t

is
Su

b-
je

ct
To

Ev
en

t
ge

ne
ra

t-
ed

By

re
sp

on
de

d-
To

By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

ge
ne

ra
t-

ed
By

re

sp
on

de
d-

To
By

is

Su
b-

je
ct

To

Po
lic

y
ap

pl
ie

sT
o

ap
pl

ie
sT

o
ap

pl
ie

sT
o

is
Se

tB
y

ap
pl

ie
sT

o
ap

pl
ie

sT
o

ap
pl

ie
sT

o
ap

pl
ie

sT
o

ap
pl

ie
sT

o
ap

pl
ie

sT
o

ap
pl

ie
s-

To
ap

pl
ie

sT
o

ap
pl

ie
sT

o
ap

pl
ie

sT
o

ap
pl

ie
s-

To

is
Su

b-
je

ct
To

ap
pl

ie
s-

To

Th
in

g

is
Su

b-
je

ct
To

Ta
bl
e
D
.1
 (c

on
tin

ue
d)

© ISO/IEC 2016 – All rights reserved� 57

﻿

ISO/IEC 18384-3:2016(E)
﻿

58� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

Annex E
(informative)

Terms Mapping Between the SOA RA Parts

This Annex contains a table which maps the definitions in the parts of ISO/IEC 18384. In particular,
the definitions in ISO/IEC 18384-1 to the ontology terms in ISO/IEC 18384-3 to highlight where more
information on each of the terms and concepts can be found as well as illustrate where the definitions
are aligned or deviate. If there is a deviation between the definitions, then an analysis of that definition
and the difference is in italics. The third column contains the clauses in ISO/IEC 18384-2 where the
concepts are defined, discussed, or referenced. The final column indicates where terms were defined if
they were defined elsewhere. If there is no concept in ISO/IEC 18384-3 or ISO/IEC 18384-4 then ‘n/a’ is
in the column.

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.1 actor
(ISO/IEC 16500-8:1999, 3.1)
person or system component that interacts
with the system as a whole and that provides
stimulus which invokes actions

n/a Discussed in
4.5, Clause 9,
Clause 11,
Clause 12

(ISO/IEC 16500-8:1999,
3.1)
BPMN

3.2 architecture
(ISO/IEC/IEEE 42010:2011, 3.2).
fundamental concepts or properties of a
system in its environment embodied in its
elements, relationships, and in the principles
of its design and evolution

n/a Discussed in
Clause 4

(ISO/IEC/
IEEE 42010:2011, 3.2).

3.3 choreography
type of composition (3.5) whose elements
(3.8) interact in a non-directed fashion with
each autonomous part knowing and following
an observable predefined pattern of behav-
iour for the entire (global) composition
Observable characteristic was added to Ontolo-
gy definition

11.3.3
In a choreography
(a composition
whose composi-
tion pattern is a
choreography)
the elements used
by the composi-
tion interact in
a non-directed
fashion, yet with
each autonomous
member knowing
and following a
predefined pattern
of behaviour for the
entire composition.

Discussed in
Clause 8

﻿

© ISO/IEC 2016 – All rights reserved� 59

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.4 collaboration
type of composition (3.5) whose elements
(3.8) interact in a non-directed fashion, each
according to their own plans and purposes
without a predefined pattern of behaviour

11.3.4
In a collaboration
(a composition
whose composi-
tion pattern is a
collaboration) the
elements used
by the composi-
tion interact in a
non-directed fash-
ion, each according
to their own plans
and purposes
without a prede-
fined pattern of
behaviour.

Discussed in
in Clause 4,
Clause 8
Collaboration
services in 15
Also used in
English sense

3.5 composition
result of assembling a collection of elements
for a particular purpose

11.2
A composition
is the result of
assembling a
collection of things
for a particular
purpose.

Discussed in
in Clause 4,
Clause 5,
Clause 8,
Clause 9,
Clause 10,
Clause 11,
Clause 12,
Clause 15
Also used in
English sense

3.6 endpoint
location at which information is received to
invoke and configure interaction

n/a Discussed
in Clause 4,
Clause 10

3.7 effect
outcome of an interaction with a service (3.20)

10.10
Interacting
with something
performing a
service has effects.
These comprise
the outcome of
that interaction,
and are how a
service (through
the element that
performs it) de-
livers value to its
consumers.

Discussed
in Clause 4,
Clause 6,
Clause 11

﻿

60� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.8 element
unit that is indivisible at a given level of ab-
straction and has a clearly defined boundary

8.2
An element is
an entity that is
opaque and indi-
visible at a given
level of abstrac-
tion. The element
has a clearly de-
fined boundary.

Discussed in
Clause 4, and
throughout
Also used in
English sense

3.9 entity
individual element (3.8) in a system with an
identity which can act as a service provider
(3.49) or service consumer

n/a
just used in defi-
nition of element
and quote from
Bibliography 4

Discussed
in Clause 4,
Clause 15

SoaML

3.10 event
something that occurs to which an element
may choose to respond

13.2
An event is
something that
happens, to which
an element may
choose to respond.
Events can be re-
sponded to by any
element. Similarly,
events may be gen-
erated (emitted)
by any element

Discussed
in Clause 4,
Clause 8,
Clause 10,
Clause 11,
Clause 12

3.11 execution context
set of technical and business elements (3.8)
needed by those with needs and capabilities
to permit service providers (3.49) and ser-
vice consumers (3.29)

n/a n/a SOA RM

3.12 human actor
actor (3.1) restricted to a person or an organ-
izational entity (3.9)

9.2 Human Actor
A human actor is
a person or an or-
ganization. disjoint
with the Service
and Task classes

Discussed
in Clause 4,
Clause 9

﻿

© ISO/IEC 2016 – All rights reserved� 61

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.13 human task
task which is done by Human Actor (3.12)

Human task not
defined, task is
equivalent

9.4 task
A task is an atomic
action which
accomplishes a
defined result.
Tasks are done by
people or organi-
zations, specifical-
ly by instances of
HumanActor

Discussed in
Clause 8

3.14 Interface
A shared boundary between two function-
al units, defined by various characteristics
pertaining to the functions, physical inter-
connections, signal exchanges, and other
characteristics, as appropriate [SOURCE: ISO/
IEC 2382-1:1993, 01.01.38]

10.13 discusses in-
terface: (consistent)

The concept of an
interface is in gen-
eral well under-
stood by practi-
tioners, including
the notion that
interfaces define
the parameters for
information going
in and out of them
when invoked.
What differs from
domain to domain
is the specific na-
ture of how an in-
terface is invoked
and how informa-
tion is passed back
and forth.
From a design per-
spective interfaces
may have more
granular opera-
tions or may be
composed of other
interfaces;

Discussed
in Clause 4,
Clause 7,
Clause 9,
Clause 14

[SOURCE: ISO/IEC 2382-
1:1993, 01.01.38]

﻿

62� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.15 loose coupling
principle where dependencies between ser-
vices are minimized

n/a
10.13 discusses
loose coupling casu-
ally but consistently

Service interfaces
are typically, but
not necessarily,
message-based
(to support loose
coupling). Fur-
thermore, service
interfaces are
always defined
independently
from any service
implementing
them (to support
loose coupling and
service mediation).

Discussed
in Clause 4,
Clause 6,
Clause 10,

3.16 orchestration
type of composition (3.5) where one particu-
lar element (3.8) is used by the composition
to oversee and direct the other elements

11.3
In an orchestration
(a composition
whose composition
pattern is an or-
chestration), there
is one particular
element used by
the composition
that oversees and
directs the other
elements. Note
that the element
that directs an
orchestration
by definition is
different than
the orchestration
(Composition
instance) itself.

Discussed
in Clause 4,
Clause 8,
Clause 9,
Clause 10

﻿

© ISO/IEC 2016 – All rights reserved� 63

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.17 policy
statement that an entity (3.9) intends to follow
or intends that another entity should follow

12
A policy is a state-
ment of direction
that a human
actor may intend
to follow or may
intend that anoth-
er human actor
should follow.
Policies can apply
to any element in
a system.
Ontology is narrow-
er than Part1, al-
lowing only human
actors to define/
follow policy.

Discussed
in Clause 4,
Clause 11,
Clause 13,
Clause 14

3.18 process
type of composition (3.5) whose elements
(3.8) are composed into a sequence or flow of
activities and interactions with the objective
of carrying out certain work

11.6
A process is a
composition
whose elements
are composed
into a sequence or
flow of activities
and interactions
with the objective
of carrying out
certain work.

Discussed
in Clause 4,
Clause 8,
Clause 11,
Clause 13,
Clause 14
Also processing
in the English
sense

3.19 real world effect
change relevant to and experienced by specif-
ic stakeholders (See Reference [6])

n/a
equivalent to
‘effect’

effect: Interacting
with something
performing a
service has effects.
These comprise
the outcome of
that interaction,
and are how a
service (through
the element that
performs it) de-
livers value to its
consumers

Discussed
in Clause 4,
Clause 6

SOA RM

﻿

64� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.20 service
logical representation of a set of activities
that has specified outcomes, is self-contained,
may be composed of other services, and is a
“black box” to consumers of the service (see
ISO/IEC 18384-3:—, 7.2)

10.2
A service is a logi-
cal representation
of a set of activities
that has speci-
fied outcomes, is
self-contained,
may be composed
of other services,
and is a “black
box” to consumers
of the service.

Discussed in
Clause 4, rest of
document

3.21 service broker
Element that enables the communication
with services (3.20), either at a business
level or at the implementation level, i.e with
intermediaries

n/a n/a

3.22 service bus
design and runtime pattern for enabling
service (3.20) interactions, such as communi-
cation, access, consumption, transformation,
intermediaries, and message routing

Discussed in
Clause 7, Clause 11,
Clause 13

n/a

3.23 service candidate
services (3.20) identified during the SOA
lifecycle (2.1.58) that meet broad service re-
quirements, and from which one or more are
selected for further development as part of an
overall SOA solution (3.56)

n/a Discussed in
Clause 8

3.24 service registry/repository
service catalogue
Logical collection of service descriptions
(3.31) and related artifacts that supports
publication, registration, search, manage-
ment and retrieval of those artifacts

n/a Discussed
in Clause 4,
Clause 9,
Clause 12,
Clause 13

3.25 service choreography
choreography (3.3) whose elements (3.8)
are services (3.20) (see ISO/IEC 18384-3:—,
Clause 8)

Clause 11 discussed
— consistent

No specific defini-
tion but extension
to service composi-
tion – then it is ‘the
result of assembling
a collection of ser-
vices’ so consistent
with choreography
of services

Discussed
in Clause 4,
Clause 8,
Clause 15
Discusses cho-
reography of
services

﻿

© ISO/IEC 2016 – All rights reserved� 65

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.26 service collaboration
collaboration (3.5) whose elements (3.8)
are services (3.20) (see ISO/IEC 18384-3:—,
Clause 8)

Clause 11 discussed
— consistent

No specific defini-
tion but extension
to service com-
position — then
it is ‘the result of
assembling a col-
lection of services’
so consistent with
collaboration of
services

Discussed
in Clause 4,
Clause 8,
Clause 15
Discusses
collaboration of
services
Collaboration in
the English sense

3.27 service component
element (3.8) that implements services (3.20)

n/a Discussed
in Clause 4,
Clause 6,
Clause 7,
Clause 8,
Clause 15

3.28 service composition
composition (3.5) that provide (in the opera-
tional sense) higher level services (3.20) that
are only composed of other services

11.5
A key SOA concept
is the notion of ser-
vice composition,
the result of as-
sembling a collec-
tion of services in
order to perform
a new higher-level
service.

Discussed
in Clause 4,
Clause 5,
Clause 8

3.29 service consumer
entity (3.9) that uses services (3.20)

10.4
that some element
uses (consumes) a
service

Discussed
in Clause 4,
Clause 8,
Clause 9,
Clause 10

3.30 service contract
terms, conditions, and interaction rules that
interacting service consumers (3.29) and
service providers (3.49) agree to (directly or
indirectly)
Part 1 restricts the participants

10.6
A service contract
defines the terms,
conditions, and
interaction rules
that interacting
participants agree
to (directly or indi-
rectly).

Discussed
in Clause 4,
Clause 11,
Clause 13,
Clause 14

﻿

66� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.31 service description
information needed in order to use, or consid-
er using, a service (3.20)

n/a
used in quote from
bibliography 10.1

“A mechanism to
enable access to
one or more capa-
bilities, where the
access is provided
using a pre-
scribed interface
and is exercised
consistent with
constraints and
policies as speci-
fied by the service
description.”

Discussed
in Clause 4,
Clause 6,
Clause 7,
Clause 14

3.32 service deployment
activities by which implementations of ser-
vices (3.20) are made able to run in a specific
hardware and software environment and
usable by service consumers (3.29)

n/a Discussed
in Clause 4,
Clause 6,
Clause 14

3.33 service development
activities by which needs and constraints are
identified and services are designed as part
of a SOA solution (3.56) in order to address
those needs within the constraints

n/a Discussed
in Clause 6,
Clause 14

3.34 service implementation
activities performing technical development
and the physical implementation of the ser-
vice (3.20) that is part of a service lifecycle
(3.40), and results in the creation of a service
component (3.27)

n/a Discussed
in Clause 4,
Clause 5,
Clause 6,
Clause 14,
Clause 15

3.35 service discovery
activities by which a service consumer
(3.29) can find services which meet their
specific functional and/or non-functional
requirements

n/a Discussed
in Clause 7,
Clause 8,
Clause 10,
Clause 13

3.36 service governance
strategy and control mechanism that applies
across the service lifecycle (3.40) and service
portfolio, which includes the establishment
of chains of responsibility, driving monitor-
ing of compliance with policies by providing
appropriate processes and measurements as
part of SOA solution governance (3.57)

n/a Discussed in
Clause 13

﻿

© ISO/IEC 2016 – All rights reserved� 67

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.37 service interaction
activity involved in making use of a capability
offered, usually across an ownership bound-
ary, in order to achieve a particular desired
real-world effect (3.18) (see Reference [6])

10.8 discusses inter-
action aspects —
not in conflict with
service interaction,
but not defined

Interaction aspects
Anyone wanting to
use a service obeys
the interaction
aspects (as defined
in the interaction-
Aspect datatype
property) of any
service contract
applying to that
interaction. In that
fashion, the inter-
action aspects of
a service contract
are context-inde-
pendent; they cap-
ture the defined
or intrinsic ways
in which a service
may be used.

Discussed
in Clause 4,
Clause 7,
Clause 10

SOA RM

3.38 service interface
interface by which other elements (3.8) can
interact and exchange information with the
service where the form of the request and
the outcome of the request is in the service
description (see ISO/IEC 18384-3:—, 7.13)

10.13
A service interface
defines the way
in which other
elements can inter-
act and exchange
information with a
service.

Discussed
in Clause 4,
Clause 9,
Clause 10,
Clause 14

3.39 service interoperability
ability of service providers (3.49) and service
consumers (3.29) to communicate, invoke
services (3.20) and exchange information at
both the syntactic and semantic level leading
to effects as defined by the service descrip-
tion (3.31)

n/a Discussed
in Clause 4,
Clause 6,
Clause 10,
Clause 14

3.40 Service Level Agreement
type of service contract (3.30) that defines
measureable conditions of interactions be-
tween a service provider (3.49) and a service
consumer (3.29)

n/a Discussed
in Clause 4,
Clause 11,
Clause 13,
Clause 14

﻿

68� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.41 service lifecycle
set of phases for realizing a service (3.20)
from conception and identification to instan-
tiation and retirement

n/a Discussed
in Clause 4,
Clause 11,
Clause 13,
Clause 14

3.42 service management
monitoring, controlling, maintaining, opti-
mizing, and operating services (3.20)

n/a Discussed
in Clause 4,
Clause 11,
Clause 13

3.43 service modelling
set of activities to develop a series of service
candidates (3.23) for functions or actions on
a SOA solution (3.57) using service oriented
analysis processes (3.46)

n/a Discussed
in Clause 4,
Clause 11,
Clause 12,
Clause 13

3.44 service monitoring
tracking state and operational conditions
related to service (3.20) execution, perfor-
mance, and real world effects (3.18)

n/a Discussed
in Clause 4,
Clause 11,
Clause 14

3.45 service orchestration
orchestration (3.15) where the orchestrated
elements (3.8) are services (3.20)

Clause 11 discussed
— consistent

No specific defini-
tion but extension
to service com-
position — then
it is ‘the result of
assembling a col-
lection of services’
so consistent with
orchestration of
services

Discussed
in Clause 4,
Clause 8,
Clause 10

3.46 service orientation
approach to designing systems in terms of ser-
vices (3.20) and service-based development

n/a Discussed in
Clause 4

3.47 service oriented analysis
preparatory information gathering steps that
are completed in support of a service model-
ling sub-process that results in the creation
of a set of services (3.20)

n/a n/a

﻿

© ISO/IEC 2016 – All rights reserved� 69

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.48 service oriented architecture
architectural style that supports service ori-
entation (3.45) and is a paradigm for building
business solutions

Introduction
Service oriented
architecture (SOA)
is an architectur-
al style in which
business and IT
systems are de-
signed in terms of
services available
at an interface and
the outcomes of
these services. A
service is a logical
representation of
a set of activities
that has specified
outcomes and is
self-contained, it
may be composed
of other services
but consumers of
the service need
not be aware of any
internal structure.

Discussed in
introduction,
Clause 4 and
throughout

﻿

70� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.49 service policy
policy as applied to a service (3.20)

Service policy is
discussed but not
explicitly defined
– consistently used
that it applies to
a service and is
separate from a
contract

12.2 Policy
A policy is a state-
ment of direction
that a human
actor may intend
to follow or may
intend that anoth-
er human actor
should follow.
provider of a ser-
vice has a policy
for the service, a
policy for a service
is not necessari-
ly owned by the
provider.
One of the advan-
tages of separating
policy from service
contract is that the
payment policy
can be changed in-
dependently of the
service contract.

Discussed
in Clause 4,
Clause 7,
Clause 11,
Clause 13

3.50 service provider
entity providing services (3.20)
Part 1 restricts provider to an entity

10.4
some element per-
forms (provides) a
service

Discussed
in Clause 4,
Clause 7,
Clause 10,
Clause 13,
Clause 14

3.51 service publishing / service registration
cataloguing of service descriptions in an
accessible location, such as a service registry/
repository (3.74), where supporting activities,
such as search and retrieval of descriptions,
make service information visible and availa-
ble to potential service consumers (3.29)

n/a Discussed
in Clause 4,
Clause 6,
Clause 8,
Clause 14,
Clause 15
Some discussion
on publishing
events

﻿

© ISO/IEC 2016 – All rights reserved� 71

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.52 SOA implementation
methods and techniques used to develop SOA
(3.47) based solutions

n/a n/a

3.53 SOA maturity
assessment of an organization’s ability to
adopt SOA (3.47) and the current level of
adoption

n/a Discussed
in Clause 4,
Clause 13

3.54 SOA maturity model
framework stating overall objectives and a
method to evaluate an organisations’ SOA
maturity (3.53) against these objectives

n/a n/a

3.55 SOA resource
elements (3.8) that provide the IT resources
used by services (3.20)

n/a n/a

3.56 SOA solution
solutions, in part or as a whole, implemented
by applying SOA (3.47) principles, concepts,
methods, and techniques

n/a
(used in introduc-
tion consistently)

Discussed
in Clause 4,
Clause 5,
Clause 8,
Clause 9,
Clause 10,
Clause 11,
Clause 13,
Clause 14,
Clause 15

3.57 SOA solution governance
specialization of IT governance specifical-
ly focused on management strategies and
mechanisms for the end users’ specific SOA
solution (3.56)

n/a Discussed
in Clause 4,
Clause 13

3.58 SOA solution lifecycle
set of activities for engineering SOA solutions
(3.56) , including analysis, design, implemen-
tation, deployment, test and management

n/a Discussed
in Clause 4,
Clause 11

﻿

72� © ISO/IEC 2016 – All rights reserved

﻿

ISO/IEC 18384-3:2016(E)

ISO/IEC 18384‑1 ISO/IEC 18384‑3 ISO/
IEC 18384‑2

Other references

Clause and definition
Analysis in italics where there is a difference

Clause and defini-
tion/discussion
Analysis in italics
where there is a

difference
n/a indicates defi-
nition not found in
ISO/IEC 18384‑3

Clause numbers
where concept

is discussed
n/a indicates
definition not
found in ISO/
IEC 18384‑2

3.59 SOA solution management
measurement, monitoring, and configuration
of the entire lifecycle of a SOA solution (3.56)

n/a Discussed
in Clause 4,
Clause 11

3.60 task
atomic action which accomplishes a defined
result (see 18384-3 6.4)

9.4
A task is an atomic
action which
accomplishes a
defined result.

Discussed
in Clause 4,
Clause 8,
Clause 15
8.1.2: has task
decomposition,
which would not
be consistent
with atomic

BPMN 2.0

3.61 Web Services
software system designed to support interop-
erable machine-to-machine interaction over
a network

n/a Discussed in
Clause 4

﻿

© ISO/IEC 2016 – All rights reserved� 73

﻿

ISO/IEC 18384-3:2016(E)

Bibliography

[1]	 ISO/IEC 19505-2, Information technology — Object Management Group Unified Modeling Language
(OMG UML) — Part 2: Superstructure

[2]	 ISO/IEC/TR 24800-1:2007, Information technology — JPSearch — Part 1: System framework and
components

[3]	 OASIS. Reference Model for SOA, Version 1.0, OASIS Standard, October 2006: Available from
World Wide Web: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[4]	 OMG. Business Process Management Notation (BPMN), see http://www.omg.org/spec/BPMN/2.0/

[5]	 ISO Technical Report TR9007, Concepts and Terminology for the Conceptual Schema and the
Information Base

[6]	 OASIS. Reference Architecture for SOA Foundation, Version 1.0, OASIS Public Review Draft 1, April
2008: see docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf

[7]	 OMG. Model Driven Architecture (MDA) Guide, Version 1.0.1, Object Management Group (OMG),
June 2003: see www.omg.org/docs/omg/03-06-01.pdf

[8]	 OMG. Unified Modeling Language (OMG UML), Superstructure, Version 2.2, OMG Doc. No.:
formal/2009-02-02, Object Management Group (OMG), February 2009: see www.omg.org/spec/
UML/2.2/Superstructure

[9]	 OMG. SOA Modeling Language (OMG SoaML) Specification for the UML Profile and Metamodel for
Services (UPMS), Revised Submission, OMG Doc. No.: ad/2008-11-01, Object Management Group
(OMG), November 2008: see www.omg.org/cgi-bin/doc?ad/08-11-01

[10]	 OWL. Web Ontology Language, World Wide Web Consortium (W3C), February 2004: see www.
w3.org/TR/owl-ref

[11]	 Beyond Concepts: Ontology as Reality Representation, by Barry Smith; available from http://
ontology.buffalo.edu/bfo/BeyondConcepts.pdf.

[12]	 Std I.E.E.E. 1471-2000: IEEE Recommended Practice for Architectural Description of Software-
intensive Systems (also published as ISO/IEC 42010: 2007); available from standards.ieee.org.

[13]	 ISO/IEC 42010: 2007, Systems and Software Engineering – Recommended Practice for Architectural
Description of Software-intensive Systems; available from www.iso.org.

[14]	 What is an Ontology? Stanford University; available from www‑ksl.stanford.edu/kst/what-is-
an-ontology.html.

[15]	 OWL 2 Web Ontology Language (Second Edition), World Wide Web Consortium (W3C), December
2012: see http://www.w3.org/TR/owl-overview/

[16]	 OWL Web Ontology Language Reference, W3C Recommendation, 10 February 2004, World-Wide
Web Consortium; available from www.w3.org/TR/owl-ref.

﻿

74� © ISO/IEC 2016 – All rights reserved

http://www.omg.org/spec/BPMN/2.0/
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/cgi-bin/doc?ad/08-11-01
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref
http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf
http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf
http://standards.ieee.org
http://www.iso.org
http://www‑ksl.stanford.edu/kst/what-is-an-ontology.html
http://www‑ksl.stanford.edu/kst/what-is-an-ontology.html
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-ref

﻿

ISO/IEC 18384-3:2016(E)
﻿

© ISO/IEC 2016 – All rights reserved

ICS 35.100.05
Price based on 75 pages

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms
	4 Notations
	5 Conventions
	6 Conformance
	7 SOA Ontology Overview
	7.1 At a Glance
	7.2 Intended Use
	7.3 Applications
	8 System and Element
	8.1 Overview
	8.2 The Element Class
	8.3 The uses and usedBy Properties
	8.4 Element — Organizational Example
	8.5 The System Class
	8.6 System — Examples
	8.6.1 Organizational Example
	8.6.2 Service composition Example
	8.6.3 Car wash Example
	8.7 The represents and representedBy Properties
	8.8 The represents and representedBy Examples
	8.8.1 Organizational Example
	8.8.2 Car Wash Example
	9 HumanActor and Task
	9.1 Overview
	9.2 The HumanActor Class
	9.3 HumanActor — Examples
	9.3.1 The uses and usedBy Properties Applied to HumanActor
	9.3.2 The represents and representedBy Properties Applied to HumanActor
	9.3.3 Organizational Example
	9.3.4 Car Wash Example
	9.4 The Task Class
	9.5 The does and doneBy Properties
	9.6 Task — Examples
	9.6.1 The uses and usedBy Properties Applied to Task
	9.6.2 The represents and representedBy Properties Applied to Task
	9.6.3 Organizational Example
	9.6.4 Car Wash Example
	10 Service, ServiceContract, and ServiceInterface
	10.1 Overview
	10.2 The Service Class
	10.3 The performs and performedBy Properties
	10.4 Service Consumers and Service Providers
	10.5 Service — Examples
	10.5.1 The uses and usedBy properties Applied to Service
	10.5.2 The represents and representedBy Properties Applied to Service
	10.5.3 Exemplifying the Difference Between Doing a Task and Performing a Service
	10.5.4 Car Wash Example
	10.6 The ServiceContract Class
	10.7 The interactionAspect and legalAspect Datatype Properties
	10.8 The hasContract and isContractFor Properties
	10.9 The involvesParty and isPartyTo Properties
	10.10 The Effect Class
	10.11 The specifies and isSpecifiedBy Properties
	10.12 ServiceContract — Examples
	10.12.1 Service-level Agreements
	10.12.2 Service Sourcing
	10.12.3 Car Wash Example
	10.13 The ServiceInterface Class
	10.14 The Constraints Datatype Property
	10.15 The hasInterface and isInterfaceOf Properties
	10.16 The InformationType Class
	10.17 The hasInput and isInputAt Properties
	10.18 The hasOutput and isOutputAt Properties
	10.19 Examples
	10.19.1 Interaction Sequencing
	10.19.2 Car wash example
	11 Composition and its Subclasses
	11.1 Overview
	11.2 The Composition Class
	11.3 The compositionPattern Datatype Property
	11.3.1 Overview
	11.3.2 The Orchestration Composition Pattern
	11.3.3 The Choreography Composition Pattern
	11.3.4 The Collaboration Composition Pattern
	11.4 The orchestrates and orchestratedBy Properties
	11.5 The ServiceComposition Class
	11.6 The Process Class
	11.7 Service Composition and Process Examples
	11.7.1 Simple Service Composition Example
	11.7.2 Process Example
	11.7.3 Process and Service Composition Example
	11.7.4 Car Wash Example
	12 Policy
	12.1 Overview
	12.2 The Policy Class
	12.3 The appliesTo and isSubjectTo Properties
	12.4 The setsPolicy and isSetBy Properties
	12.5 Examples
	12.5.1 Car Wash Example
	13 Event
	13.1 Overview
	13.2 The Event Class
	13.3 The generates and generatedBy Properties
	13.4 The respondsTo and respondedToBy Properties
	Annex A (informative) Complete Car Wash Example
	Annex B (informative) Internet Purchase Example
	Annex C (normative) The OWL Definition of the SOA Ontology
	Annex D (informative) Class Relationship Matrix
	Annex E (informative) Terms Mapping Between the SOA RA Parts
	Bibliography

