High voltage switchgear and control gear –

Part 111:
Overhead, pad-mounted, dry vault, and submersible automatic circuit reclosers and fault interrupters for alternating current systems up to 38 kV
CONTENTS

FOREWORD ... 4
IEEE Introduction .. 7

1. Scope .. 8

2. References .. 8

3. Definitions ... 10

4. Service conditions .. 11
 4.1 Usual service conditions .. 11
 4.2 Unusual service conditions ... 11

5. Rating .. 12
 5.1 Rating information ... 12
 5.2 Rated maximum voltage ... 12
 5.3 Rated power-frequency ... 13
 5.4 Rated continuous current .. 13
 5.5 Rated minimum tripping current (for series-trip reclosers/FIs) ... 14
 5.6 Rated symmetrical interrupting current ... 14
 5.7 Rated symmetrical making current ... 16
 5.8 Rated lightning impulse withstand voltage ... 16
 5.9 Rated control voltage and ranges .. 16
 5.10 Rated line and cable charging interrupting currents (where applicable) ... 16

6. Design tests (type tests) ... 22
 6.1 General .. 22
 6.2 Insulation (dielectric) tests .. 22
 6.3 Switching tests .. 25
 6.4 Making current capability .. 28
 6.5 Rated symmetrical interrupting current tests .. 28
 6.6 Minimum tripping current tests .. 39
 6.7 Partial discharge (corona) tests .. 40
 6.8 Radio influence voltage tests (RIV) .. 41
 6.9 Surge current test; series-trip reclosers/FIs .. 42
 6.10 Temperature rise test .. 43
 6.11 Time–current tests .. 45
 6.12 Mechanical duty test .. 46
6.13 Control electronic elements surge withstand capability (SWC) tests 46
6.14 Condition of recloser/FI after each test of 6.3 and 6.5 ... 48

7. Production tests (routine tests) .. 49

7.1 Reclosing and overcurrent trip calibration ... 50
7.2 Control, secondary wiring, and accessory devices check tests ... 50
7.3 Dielectric withstand test; 1-min. dry power-frequency ... 50
7.4 Partial discharge test .. 50
7.5 Mechanical operations tests ... 50
7.6 Water leak test ... 51

8. Field tests on units in service, including dc withstand tests on cables 51

9. Construction requirements .. 52

9.1 Tank construction: submersible or dry vault reclosers/FIs .. 52
9.2 Grounding provisions .. 52
9.3 Insulating medium quantity indicators .. 53
9.4 Oil sampling provision (submersible reclosers/FIs) .. 53
9.5 Manual operating provision ... 53
9.6 Position indicator .. 53
9.7 Nameplate markings .. 53
9.8 Stored energy mechanism charge indicator ... 54
9.9 Enclosure integrity .. 54
9.10 Counters .. 54
9.11 Conductor terminal sizes .. 54
9.12 Tank construction—pressurized reclosers/FIs only ... 54

Annex A (informative) X/R Ratios ... 55
Annex B (informative) Simulated surge arrester operation tests ... 57
Annex C (normative) Method of drawing the envelope of the prospective transient recovery voltage of a circuit and determining the representative parameters 60
Annex D (informative) Background basis of recloser TRV values .. 62
Annex E (informative) Altitude correction factors .. 66
Annex F (informative) Bibliography ... 69
Annex G (informative) List of Participants ... 70
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 62271-111 has been processed through IEC sub-committee 17A: High-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>IEEE Std</th>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>C37.60 (2003)</td>
<td>17A/737/FDIS</td>
<td>17A/746/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives.

The committee has decided that the contents of this publication will remain unchanged until 2008.

The list of all the parts of IEC 62271 series, under the general title High-voltage switchgear and controlgear, can be found on the IEC website.
IEC/IEEE Dual Logo International Standards

This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been published in accordance with the ISO/IEC Directives.

IEC/IEEE Standards documents are developed within the IEC and IEEE through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEC administers the process and establishes rules to promote fairness in the consensus development process, the IEC does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEC/IEEE Dual Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations – Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party, regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA and/or General Secretary, IEC, 3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA: +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

NOTE Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.
IEEE Standard for Overhead, Pad-Mounted, Dry Vault, and Submersible Automatic Circuit Reclosers and Fault Interrupters for Alternating Current Systems Up to 38 kV

Abstract: Required definitions, ratings, procedures for performing design tests, production tests, and construction requirements for overhead, pad-mounted, dry vault, and submersible automatic circuit reclosers and fault interrupters for alternating systems up to 38 kV are specified.

Keywords: dry vault, fault interrupter, overhead, pad-mounted, recloser, submersible, standard operating duty, switchgear
IEEE Introduction

This standard has been revised from IEEE Std C37.60-1981, incorporating significant improvements that reflect the present state of the art in recloser technology. These include changes and additions in the following areas:

a) Expanded the standard to include gas-insulated reclosers.
b) Revised the title and scope to limit the standard to 38 kV; deleted ratings above 38 kV nominal.
c) Added voltage ratings commonly used outside of North America with related dielectric withstand capabilities taken from IEC 60694-2002.*
d) Added several new interrupting ratings in the 15.5 kV, 27 kV, and 38 kV ranges.
e) Revised limits of temperature and temperature rise to be consistent with circuit breaker standards.
f) Reorganized the switching tests into 6.3 following a format similar to IEEE Std 1247™-1998 and referenced IEEE Std 1247-1998 for switching test procedures.
g) Removed the requirement for transformer magnetizing tests; reference discussion in IEEE Std 1247-1998.
h) Clarified the intent of the switching tests as related required capabilities and prohibited the use of single-phase tests to qualify three-phase reclosers in the performance of the switching tests.
i) Removed the altitude correction factors. (Refer to the following paragraph and informative Annex E.)
j) Removed the X/R footnote and table of multiplication factors from old 5.6 to new informative Annex A with expanded information and data.
k) Added new informative Annex B.
l) Added transient recovery voltage (TRV) specifications and informative Annex C and Annex D.
m) Restricted the use of single-phase testing to verify three-phase performance.

n) Reduced radio influence voltage (RIV) limits.
o) Added Partial Discharge as a design and production test.
p) Reduced dc withstand voltage test time from 15 min. to 5 min.

Although this revised standard will be published before the work on IEEE PC37.100.1, Draft Standard Requirements for Power Switchgear [B13]* is completed, it is the intention of the Recloser Working Group to issue supplements or revisions to adopt common requirements. There was considerable discussion in the Recloser Working Group regarding the addition of the partial discharge test requirements suggesting that this topic should be revisited at the next revision cycle to see if the data collected between now and then shall warrant any changes in the test procedure or test limits.

*Information on references can be found in Clause 2.
*B The numbers in brackets correspond to the numbers of the bibliography in Annex F.
HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 111: Overhead, pad-mounted, dry vault, and submersible automatic circuit reclosers and fault interrupters for alternating current systems up to 38 kV

1. Scope

This standard applies to all overhead, pad-mounted, dry vault, and submersible single- or multipole alternating current automatic circuit reclosers and fault interrupters for rated maximum voltages above 1000 V and up to 38 kV.

In order to simplify this standard where possible, the term recloser/FI (reclosers/FIs) has been substituted for automatic circuit recloser or fault interrupter or both.

NOTE—When reclosers are applied in a substation, special considerations may apply, see 6.5.1.5.3.

2. References

This standard shall be used in conjunction with the following publications. When the following publications are superseded by an approved revision, the revision shall apply.

ANSI C37.06-2000, American National Standard for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis—Preferred Ratings and Related Required Capabilities.¹

¹ANSI publications are available from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA (http://www.ansi.org).

ANSI C63.2-1996, American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 kHz to 40 GHz—Specifications.

ASME BPVC-1998, Boilers and Pressure Vessels Code—Section VIII: Rules for Construction of Pressure Vessels—Division 1.²

IEC 60060-1-1989, High-Voltage Test Techniques—Part 1: General Definitions and Test Requirements.³

IEC 60502-1-2004, Power Cables with Extruded Insulation and Their Accessories for Rated Voltages from 1 kV ($U_m = 1.2$ kV) Up to 30 kV ($U_m = 36$ kV)—Part 1: Cables for Rated Voltages of 1 kV ($U_m = 1.2$ kV) and 3 kV ($U_m = 3.6$ kV).

IEC 60502-2-2005, Power Cables with Extruded Insulation and Their Accessories for Rated Voltages from 1 kV ($U_m = 1.2$ kV) Up to 30 kV ($U_m = 36$ kV)—Part 2: Cables for Rated Voltages from 6 kV ($U_m = 7.2$ kV) Up to 30 kV ($U_m = 36$ kV).

IEC 60694-2002, Common Specifications for High-Voltage Switchgear and Controlgear Standards.⁶

IEC 62271-100-2003, High-Voltage Switchgear and Controlgear—Part 100: High-Voltage Alternating-Current Circuit-Breakers.⁷

IEEE Std 4™-1995, IEEE Standard Techniques for High Voltage Testing.⁴,⁵

²ASME publications are available from the American Society of Mechanical Engineers, 3 Park Avenue, New York, NY 10016-5990, USA (http://www.asme.org).
³IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue de Varembe, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch). IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA (http://www.ansi.org).
⁴The IEEE standards or products referred to in Clause 2 are trademarks owned by the Institute of Electrical and Electronics Engineers, Inc.
⁵IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (http://standards.ieee.org/).

NEMA 107-1987 (Reaff 1993), Methods of Measurement of Radio Influence Voltage (RIV) of High-Voltage Apparatus.6

6NEMA publications are available from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112-5704, USA (http://global.ihs.com/).