CONTENTS

FOREWORD ... 4

1 Scope .. 6

2 Normative references .. 6

3 Terms and definitions .. 6

4 General ... 6

5 Comparison between HVDC and AC alternatives 8

 5.1 Consideration of overall network planning 8
 5.1.1 Overall network planning 8
 5.1.2 Connection topologies for HVDC systems 8

5.2 Comparison of transmission capacity 9

5.3 Comparison of operation requirements 9

 5.3.1 Comparison of system fault and stability 9
 5.3.2 Comparison of voltage regulation and reactive power compensation 9

5.4 Comparison of cost .. 10

5.5 Comparison of other aspects ... 11

6 HVDC solutions .. 11

 6.1 Main circuit topologies ... 11
 6.1.1 General ... 11
 6.1.2 Monopolar HVDC transmission system 12
 6.1.3 Bipolar HVDC transmission system 12
 6.1.4 Rigid bipolar HVDC system 12

6.2 Main equipment ... 13

 6.2.1 General .. 13
 6.2.2 Converter .. 13
 6.2.3 AC filtering equipment 14

6.3 Key DC rating parameters ... 14

 6.3.1 Rated DC power .. 14
 6.3.2 Rated DC voltage .. 15
 6.3.3 Rated DC current .. 16

6.4 Line conductor .. 16

6.5 Station sites and transmission line routes 17

 6.5.1 Converter station sites 17
 6.5.2 Electrode station sites ... 18
 6.5.3 Overhead line route .. 18
 6.5.4 Submarine cable route 18
 6.5.5 Land cable route .. 19

6.6 Interface requirements between AC network and HVDC 19

6.7 Requirements of HVDC control system 20

 6.7.1 Requirements for basic control and protection 20
 6.7.2 Supplementary control 20

7 Analysis of security of supply and stability for DC alternatives 21

 7.1 Requirements for power network connection criteria 21
 7.1.1 General requirements for AC/DC power network 21
 7.1.2 Short-circuit ratio (SCR) of the AC system connected with single DC system 21
 7.1.3 Short-circuit ratio of the AC system connected with multi-infeed DC system 22
7.1.4 Effective inertia constant of AC/DC power network ... 23
7.2 Stability of AC power system due to HVDC alternatives .. 24
 7.2.1 Stability analysis for AC power system ... 24
 7.2.2 Analysis of sub-synchronous torsional interactions (SSTI) between
 HVDC and nearby turbine-generator .. 24
 7.2.3 Analysis for multi-infeed HVDC links .. 25
8 Economic comparison among the alternatives ... 25
 8.1 General .. 25
 8.2 Main factors to be considered .. 25
 8.3 Indexes to be considered .. 26
 8.4 Sensitivity analysis .. 26
 8.5 Economic conclusion for recommended solution .. 26
9 Study conclusions and recommended solution .. 26

Bibliography .. 28

Figure 1 – Phases during integration of a new HVDC system into the power network 7
Figure 2 – Procedure for planning an HVDC system ... 8
Figure 3 – Cost versus distance .. 11

Table 1 – Typical overhead bipolar HVDC project for power transmission 15
INTERNATIONAL ELECTROTECHNICAL COMMISSION

GUIDELINE FOR PLANNING OF HVDC SYSTEMS –

Part 1: HVDC systems with line-commutated converters

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publications”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example “state of the art”.

IEC TR 63179-1, which is a Technical Report, has been prepared by IEC technical committee 115: High Voltage Direct Current (HVDC) transmission for DC voltages above 100 kV.

The text of this Technical Report is based on the following documents:

<table>
<thead>
<tr>
<th>Draft TR</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>115/216/DTR</td>
<td>115/230/RVDTR</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table.
This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
1 Scope

This document provides guidelines for the selection of a high-voltage direct current (HVDC) system with line-commutated converters (LCC), hereafter referred to as HVDC system, for the purposes of integrating HVDC systems in AC power networks, selection of rated voltage and power, overloads, circuit configuration, expandability, comparison of technical, economic, regulatory, political, social and environmental factors, etc. This document is applicable for planning an HVDC system.

This guideline is not exhaustive and it is possible that there will be other specific aspects, particular to a specific HVDC project, which will also need to be considered.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60633, High-voltage direct current (HVDC) transmission – Vocabulary