INTERNATIONAL STANDARD ISO/IEC 13211-1:1995
TECHNICAL CORRIGENDUM 2

Published 2012-02-15

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION o MEXOYHAPOOHAA OPTAHU3ALIMA MO CTAHOAPTUSALIMMA o ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION . MEXOYHAPOOHAA SNEKTPOTEXHUYECKAA KOMUCCKA . COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Information technology — Programming languages — Prolog —

Part 1:
General core

TECHNICAL CORRIGENDUM 2

Technologies de l'information — Langages de programmation — Prolog —

Partie 1: Noyau général

RECTIFICATIF TECHNIQUE 2

Technical Corrigendum 2 to ISO/IEC 13211-1:1995 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and
system software interfaces.

ICS 35.060 Ref. No. ISO/IEC 13211-1:1995/Cor.2:2012(E)

© ISO/IEC 2012 — Al rights reserved

Published in Switzerland



ISO/IEC 13211-1:1995/Cor.2:2012(E)

Information technology - Programming
languages - Prolog - Part 1:

General Core

TECHNICAL CORRIGENDUM 2

Allow bar character | as infix operator, forbid '{}' and []' as operators.

6.3.4.3 Operators

Add prior to syntax rules:

A bar (6.4) shall be equivalent to the atom ' | ' when ' | ' is an operator.
Add the syntax rule:
op = bar ;
Abstract: |
Priority:  n n
Specifier: s s
Condition: ' | ' is an operator

Add at the end of 6.3.4.3 before NOTES:

There shall not be an operator '{} " or ' []"'.

An operator ' | ' shall be only an infix operator with priority greater than or equal to 1001.
Add to note 1

Bar is also a solo character (6.5.3), and a token (6.4) but not an atom.

Replace note 3

3 The third argument of op/3 (8.14.3) may be any atom
except ',' so the priority of the comma operator cannot be
changed.

by

3 The third argument of op/3 (8.14.3) may be any atomexcept ', ', '[1',and '{} ' so the
priority of the comma operator cannot be changed, and so empty lists and curly bracket pairs
cannot be declared as operators.

6.3.4.4

2 © ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

Add in Table 7 - The operator table:
Priority Specifier Operator(s)
400 yfx div

200 fy +

6.4 Tokens

Add as the last syntax rule:

bar (* 6.4 *)
= [ layout text sequence (* 6.4.1 *) 1 ,
bar token (* 6.4.8 *) ;

6.4.8 Other tokens

Add as the last syntax rule:

bar token (* 6.4.8 *)
= bar char (* 6.5.3 *) ;

6.5.3 Solo characters

Add alternative for solo char:

| bar char (* 6.5.3 *)
Add as the last syntax rule:

bar char (* 6.5.3 *) = "|" ;

Add the new subclause into the place indicated by its number:

7.1.1.5 Witness variable list of a term

The witness variable list of a term T is a list of variables and a witness of the variable set (7.1.1.2)
of T. The variables appear according to their first occurrence in left-to-right traversal of T.

NOTES

1 For example, [X, Y] is the witness variable list of each of the terms £ (X, Y), X+Y+X+Y,
X+Y+X, and X*Y+X*Y.

2 The concept of a witness variable list of a term is required when defining term variables/2
(8.5.5).

Add the new sublause into the place indicated by its number:

7.1.6.9 List prefix of a term

LP is a list prefix of a term p if:

a) Lp is an empty list, or

© ISO/IEC 2012 — All rights reserved 3



ISO/IEC 13211-1:1995/Cor.2:2012(E)

b) p is a compound term whose principal functor is the list constructor and the heads of L.rP and P

are identical, and the tail of P is a list prefix of the tail of p.

NOTE — For example, [], [1],and [1, 2] are all list prefixes of [1,2,3], [1,2]X], and

[1,2|nonlist].

Correct example for call/1.

7.8.3.4 example no. 6

For program

b(X) :-
Y = (write(X), X),
call(Y).

replace

b(3).

Outputs '3', then

type error(callable, 3).
by

b(3).

type error(callable, (write(3),3)).

Adjust Template and Modes of catch/3, remove error conditions. In this manner all errors of the

goal are caught by catch/3.

7.8.9 catch/3

Replace

7.8.9.2 Template and modes

catch(+callable term, ?term,

7.8.9.3 Errors

a) G is a variable
— instantiation error.

b) G is neither a variable nor a callable term

— type error(callable, G)
by

7.8.9.2 Template and modes

catch (goal, ?term, goal)

7.8.9.3 Errors

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

None.

7.9.1 Description (Evaluating an expression)

Replace 7.9.1 Note 1

1 An error occurs if T is an atom or variable.

by

1 An error occurs if T is a variable or if there is no operation Fin step 7.9.1 ¢).

7.9.2 Errors (Evaluating an expression)

Replace error condition i and j which both were added in Technical Corrigendum 1.

i) The value of an argument Culprit is not a member of the set /
— type error (integer, Culprit).

j) The value of an argument Culprit is not a member of the set F
— type error (float, Culprit).

by

i) E is a compound term with no corresponding operator in step 7.9.1 ¢ but there is an operator
corresponding to the same principal functor with different types such that

a) the i-th argument of the corresponding operator has type Type, and
b) the value Culprit of the i-th argument of E has a different type

— type error (Type, Culprit).

Add new error class, new types, and new domain.

7.12.2 Error classification

Remove in subclause b variable from the enumerated set ValidType and add pair to the
set validType. Add in subclause ¢ order to the set ValidDomain.
Add additional error class:

k) There shall be an Uninstantiation Error when an argument or one of its components is not a
variable, and a variable or a component as variable is required. It has the form
uninstantiation error (Culprit) where Culprit is the argument or one of its
components which caused the error.

8.1.3 Errors (The format of built-in predicate definitions)

Replace in Note 5

5 When a built-in predicate has a single mode and template,
an argument whose mode is - is always associated with an error
condition: a type error when the argument is not a variable.

the words

© ISO/IEC 2012 — All rights reserved 5



ISO/IEC 13211-1:1995/Cor.2:2012(E)

a type error

by
an uninstantiation error

Add testing built-in predicate subsumes_term/2.

Add the new subclauses into the place indicated by their number:

8.2.4 subsumes_term/2

This built-in predicate provides a test for syntactic one-sided unification.

8.2.4.1 Description

subsumes_ term(General, Specific) is true iff there is a substitution 6 such that

a) GeneralB and Specific are identical, and

b) SpecificBand Specific are identical.

Procedurally, subsumes term(General, Specific) simply succeeds or fails accordingly.

There is no side effect or unification.

8.2.4.2 Template and modes

subsumes term(Q@term, @term)

8.2.4.3 Errors

None.

8.2.4.4 Examples

subsumes term(a, a).
Succeeds.

subsumes term(f (X,Y), £(Z,2)).
Succeeds.

subsumes term(f(z,7Z), f(X,Y)).
Fails.

subsumes term(g(X), g(f(X))).
Fails.

subsumes term(X, £ (X)).
Fails.

subsumes term(X, Y), subsumes term(Y,
Succeeds.

NOTES

£(X)).

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

1 The final two examples show that subsumes_term/2 is not transitive. A transitive definition
corresponding to the term-lattice partial order is term_instance/2 (3.95).

term instance (Term, Instance) :-
copy term(Term, Copy),
subsumes term(Copy, Instance).

term instance (g(X), g(f(X))).
Succeeds.
2 Many existing processors implement a built-in predicate subsumes/2 which unifies the
arguments. This often leads to erroneous programs. The following definition is mentioned only for
backwards compatibility.

subsumes (General, Specific) :-
subsumes term(General, Specific),
General = Specific.

Add testing built-in predicates callable/1, ground/1, acyclic_term/1.

Add the new subclauses into the place indicated by their number:

8.3.9 callable/1

8.3.9.1 Description

callable (Term) is true iff Term is a callable term (3.24).

NOTE — Not every callable term can be converted to the body of a clause, for example (1, 2).

8.3.9.2 Template and modes

callable (R@term)

8.3.9.3 Errors

None.

8.3.9.4 Examples

callable(a) .
Succeeds.

callable(3).
Fails.

callable (X) .
Fails.

callable((1,2)).
Succeeds.

8.3.10 ground/1

© ISO/IEC 2012 — All rights reserved 7



ISO/IEC 13211-1:1995/Cor.2:2012(E)

8.3.10.1 Description

ground (Term) is true iff Term is a ground term (3.82).

8.3.10.2 Template and modes

ground (@term)

8.3.10.3 Errors

None.

8.3.10.4 Examples

ground(3) .
Succeeds.

ground(a(l, _)).
Fails.

8.3.11 acyclic_term/1

8.3.11.1 Description

acyclic_term(Term) is true iff Term is acyclic, that is, it is a variable or a term instantiated
(3.96) with respect to the substitution of a set of equations not subject to occurs check (7.3.3).

8.3.11.2 Template and modes

acyclic term(@term)

8.3.11.3 Errors

None.

8.3.11.4 Examples

acyclic term(a(l, )).
Succeeds.

X = £(X), acyclic_term(X).
Undefined.
[STO 7.3.3, does not succeed in many implementations,
but fails, produces an error, or loops]

Add built-in predicates compare/3, sort/2, keysort/2 based on term order.

8.4 Term comparison, 8.4.1

8 © ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

Move the two paragraphs from subclause 8.4 to subclause 8.4.1. Add into subclause 8.4:

These built-in predicates compare and sort terms based on the ordering of terms (7.2).
Add the new subclauses into the place indicated by their number:
8.4.2 compare/3 — three-way comparison

8.4.2.1 Description

compare (Order, X, Y) istrue iff Order unifies with R which is one of the following atoms:
'=' iff X and Y are identical terms (3.87), '<' iff X term_precedes Y (7.2), and '>"' iff ¥
term_precedes X.

Procedurally, compare (Order, X, Y) isexecuted as follows:

a) If x and Y are identical, then let R be the atom '="' and proceeds to 8.4.2.1 d.

b) Else if X term_precedes Y (7.3), then let R be the atom '<' and proceeds to 8.4.2.1 d.

c) Else let R be the atom '>".

d) If R unifies with Order, then the goal succeeds.

e) Else the goal fails.

8.4.2.2 Template and modes

compare (-atom, ?term, ?term)
compare (+tatom, @term, @term)

8.4.2.3 Errors

a) Order is neither a variable nor an atom
— type error (atom, Order).

b) order is an atom but not <, =, or >
— domain_error (order, Order).

8.4.2.4 Examples

compare (Order, 3, 5).
Succeeds, unifying Order with ().

compare (Order, d, d).
Succeeds, unifying Order with (=).

compare (Order, Order, <).
Succeeds, unifying Order with ().

compare (<, <, <).
Fails.

compare (1+2, 3, 3.0).

© ISO/IEC 2012 — All rights reserved 9



ISO/IEC 13211-1:1995/Cor.2:2012(E)

type error(atom, 1+2).

compare (>=, 3, 3.0).
domain error (order, >=).

8.4.3 sort/2

8.4.3.1 Description

sort (List, Sorted) is true iff Sorted unifies with the sorted list of List (7.1.6.5).

Procedurally, sort (List, Sorted) is executed as follows:

a) Let sL be the sorted list of list List (7.1.6.5).
b) If ST unifies with Sorted, then the goal succeeds.

c) Else the goal fails.

NOTE — The following definition defines the logical and procedural behaviour of sort/2 when
no error conditions are satisfied and assumes that member/2 is defined as in 8.10.3.4.

sort ([1, []).
sort (List, Sorted) :-
setof (X, member (X,List), Sorted).

8.4.3.2 Template and modes

sort (@list, -list)
sort (+1list, +1list)

8.4.3.3 Errors

a) List is a partial list
— instantiation error.

b) List is neither a partial list nor a list
— type error(list, List).

C) Sorted is neither a partial list nor a list
— type _error (list, Sorted).

8.4.3.4 Examples

sort([1l, 1], Sorted).
Succeeds unifies Sorted with [1].

sort ([1+Y, 2z, &, VvV, 1, 2, v, 1, 7.0, 8.0,
8.0, -a, -X, al], Sorted).
Succeeds, unifying Sorted with

(v, 7.0, 8.0, 1, 2, a, z, -X, -a, 1l+y,

sort ([X, 11, [1, 11).
Succeeds, unifying X with 1.

10

/* 8.10.3, 8.10.3.4 */

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

sort ([1, 11, [1, 11).
Fails.

sort ([V], V).
Undefined.
[STO 7.3.3, corresponds to the goal [V] = V. In many
implementations this goal succeeds and violates
the mode sort(@list, -1list).]

sort ([£(U),U,U,£(V),£(U),V],L).
Succeeds unifying L with [U,V,f(U),f (V)] or
[(v,U0,£(v),£(U) 1.
[The solution is implementation dependent.]

8.4.4 keysort/2

8.4.4.1 Description

keysort (Pairs, Sorted) istrue iff Pairs is a list of compound terms with principal functor
(-) /2 and Sorted unifies with a permutation KVs of Pairs such that the Key entries of the
elements Key-Value of KVs are in weakly increasing term order (7.2). Elements with an
identical Key appear in the same relative sequence as in Pairs.

Procedurally, keysort (Pairs, Sorted) is executed as follows:

a) Let Ts be the sorted list (7.1.6.5) containing as elements terms t (Key, P, Value) for each
element Key-value of Pairs with P such that Key-value is the P-th element in Pairs.

b) Let Kvs be the list with elements Key-Value occurring in the same sequence as elements
t (Key, _, Value) inTs.

c) If kvs unifies with Sorted, then the goal succeeds.
d) Else the goal fails.

NOTE — The following definition defines the logical and procedural behaviour of keysort/2
when no error conditions are satisfied. The auxiliary predicate numbered from/2 is not needed
in many existing processors because Ps happens to be a sorted list of variables.

keysort (Pairs, Sorted) :-
pairs ts ps(Pairs, Ts, Ps),
numbered from(Ps, 1),
sort (Ts, STs), /* 8.4.3 */
pairs ts ps(Sorted, STs, ).

pairs ts ps([], [1, [1).
pairs ts ps([Key-Value|Pairs], [t (Key,P,Value)|Ts], [P|Ps]) :-
pairs ts ps(Pairs, Ts, Ps).

numbered from([], ).
numbered from([IO|Is], IO0) :-

I1 is IO + 1,
numbered from(Is, Il).

8.4.4.2 Template and modes

© ISO/IEC 2012 — All rights reserved 11



ISO/IEC 13211-1:1995/Cor.2:2012(E)

keysort (@list, -1list)
keysort (+1ist, +1list)

8.4.4.3 Errors

a) Pairs is a partial list
— instantiation error.

b) Pairs is neither a partial list nor a list
— type error(list, Pairs).

C) Sorted is neither a partial list nor a list
— type _error(list, Sorted).

d) An element of a list prefix of Pairs is a variable
— instantiation error.

e) An element E of a list prefix of Pairs is neither a variable nor a compound term with principal
functor (-) /2
— type _error (pair, E).

f) An element E of a list prefix of Sorted is neither a variable nor a compound term with principal
functor (-) /2
— type_error (pair, E).

8.4.4.4 Examples

keysort([1-1, 1-1], Sorted).
Succeeds unifing Sorted with [1-1, 1-17.

keysort ([2-99, 1-a, 3-f( ), 1-z, 1-a, 2-44], Sorted).
Succeeds unifying Sorted with [l1-a, 1-z, 1-a,
2-99, 2-44, 3-f()].
keysort ([X-1,1-11,[2-1,1-1]).
Succeeds unifying X with 2.

Pairs = [1-2|Pairs], keysort(Pairs, Sorted).
Undefined.
[STO 7.3.3. type error(list, [1-2,1-2,...]) or

loops in many implementations.]

keysort ([V-V], V).
Undefined.
[STO 7.3.3, corresponds to the goal [V-V] = V.
In many implementations this goal succeeds
and violates the mode keysort(@list, -1list).]

Add built-in predicate term_variables/2.

Add the new subclauses into the place indicated by their number:

8.5.5 term_variables/2

12 © ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

8.5.5.1 Description

term variables (Term, Vars) is true iff Vars unifies with the witness variable list of Term
(7.1.1.5).

Procedurally, term variables (Term, Vars) is executed as follows:
a) Let Tvars be the witness variable list of Term (7.1.1.5).

b) If vars unifies with Tvars, then the goal succeeds.

c) Else the goal fails.

NOTE — The order of variables in vars ensures that, for every term T, the following goals are
true:

term variables (T, Vsl), term variables (T, Vs2), Vsl == Vs2.

term variables (T, Vsl), term variables(Vsl, Vs2), Vsl == Vs2.

8.5.5.2 Template and modes

term variables(@term, -list)
term variables(?term, ?list)

8.5.5.3 Errors

a) Vars is neither a partial list nor a list
— type error(list, Vars).

8.5.5.4 Examples

term variables(t, Vars).
Succeeds, unifying Vars with [].

term variables (A+B*C/B-D, Vars).
Succeeds, unifying Vars with [A, B, C, D].

term variables(t, [ , lal).
type error(list, [ , lal).

S=B+T, T=A*B, term variables(S, Vars).
Succeeds, unifying Vars with [B, A], T with A*B,
and S with B+A*B.

T=A*B, S=B+T, term variables(S, Vars).
Same answer as above example.

term variables (A+B+B, [B|Vars]).
Succeeds, unifying A with B and Vars with [B].

term variables (X+Vars, Vars), Vars = [ , _].
Undefined.
[STO 7.3.3, corresponds to the goal [X, Vars] = Vars.]

© ISO/IEC 2012 — All rights reserved 13



ISO/IEC 13211-1:1995/Cor.2:2012(E)

8.9.3.3 Errors (retract/1)

Replace in error condition ¢
— permission error (access, static procedure, Pred).

by

— permission error (modify, static procedure, Pred).

Add built-in predicate retractall/1.

Add the new subclauses into the place indicated by their number:
8.9.5 retractall/1

8.9.5.1 Description

retractall (Head) is true.

Procedurally, retractall (Head) is executed as follows:

a) Searches sequentially through each dynamic user-defined procedure in the database and
removes all clauses whose head unifies with Head, and the goal succeeds.

NOTES

1 The dynamic predicate remains known to the system as a dynamic predicate even when all of
its clauses are removed.

2 Many existing processors define retractall/1 as follows.

retractall (Head) :-
retract ((Head :- )),
fail.

retractall( ).

8.9.5.2 Template and modes

retractall (Gcallable term)

8.9.5.3 Errors

a) Head is a variable
— instantiation error.

b) Head is neither a variable nor a callable term
— type error(callable, Head).

c) The predicate indicator Pred of Head is that of a static procedure
— permission_ error (modify, static procedure, Pred).

8.9.5.4 Examples

The examples defined in this subclause assume the database has been created from the
following Prolog text:

14 © ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

:— dynamic (insect/1).
insect (ant) .
insect (bee) .

retractall (insect (bee)) .
Succeeds, retracting the clause 'insect (bee)'.

retractall (insect ( )) .

Succeeds, retracting all the clauses of predicate insect/1.

retractall (insect (spider)).
Succeeds.

retractall (mammal (_)) .
Succeeds.

retractall (3).
type error(callable, 3).

retractall (retractall( )).

permission error (modify, static procedure, retractall/1l).

8.11.5.3 Errors (open/4, open/3)

Replace error condition f

f) Stream is not a variable

— type error (variable, Stream).
by

f) Stream is not a variable
—uninstantiation error (Stream).

8.14.3.3 Errors (op/3)

Replace

[) Op_specifier is a specifier such that Operator
would have an invalid set of specifiers (see 6.3.4.3).
— permission_error (create, operator, Operator).

by
[) Operator is an atom, Priority is a priority, and Op _specifier is a specifier such that

Operator would have an invalid set of priorities and specifiers (see 6.3.4.3).
— permission_error (create, operator, Operator).

Add additional error:

m) Operatoris alist, Priority is a priority, and Op specifier is a specifier such that an
element Op of the list Operator would have an invalid set of priorities and specifiers (see
6.3.4.3).

—permission_error (create, operator, Op).

8.14.3.4

© ISO/IEC 2012 — All rights reserved

15



ISO/IEC 13211-1:1995/Cor.2:2012(E)

16

Add the following examples:

op (500, xfy, {}).
permission error (create, operator, {}).

op (500, xfy, [{}1).
permission error (create, operator, {}).

op (1000, xfy, 'I').
permission error (create, operator, '|').

op (1000, xfy, ['[']).
permission error (create, operator, '|').

op (1150, fx, '|'").
permission error (create, operator, '|').

op(1105,xfy,"I1").
Succeeds, making | a right associative
infix operator with priority 1105.

op(0,xfy,"|").
Succeeds, making | no longer an infix operator.

Add built-in predicate call/2..8 and false/0.
Add the new subclauses into the place indicated by their number:

8.15.4 call/2..8

These built-in predicates provide support for higher-order programming.

NOTE — A built-in predicate apply/2 was implemented in some processors. Most uses can be
directly replaced by call/2..8.

8.15.4.1 Description

call (Closure, Argl, ...) istrueiff call (Goal) is true where Goal is constructed by
appending Argl, ... additional arguments to the arguments (if any) of Closure.

Procedurally, a goal of predicate call/N with N = 2. is executed as follows:
a)Letcall (p(Xy, ..., Xy, Y2, ..., Yy) bethe goaltobe executed, M =0,

b) Execute call (p (Xy, ..., Xu, Y, ..., Yy)) instead.

8.15.4.2 Template and modes

call (+callable term, ?term, ...)

8.15.4.3 Errors

a) Closure is a variable
— instantiation error.

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

b) Closure is neither a variable nor a callable term
— type error (callable, Closure).

c) The number of arguments in the resulting goal exceeds the implementation defined maximum
arity (7.11.2.3)

— representation error (max arity).

d) call/Nis called with N = 9 and it shall be implementation dependent whether this error
condition is satisfied
——existence_error(procedure,call/N).

e) Goal cannot be converted to a goal
— type error (callable, Goal).

NOTE — A standard-conforming processor may implement call/N in one of the following ways
because error condition d is implementation dependent (3.91).

1) Implement only the seven built-in predicates cal11/2 upto call/8.

2) Implement call/2. .N up to any N that is within 8. .max_arity (7.11.2.3). Produce
existence errors for larger arities below max _arity.

3) Implement cal1/9 and above only for certain execution modes.

8.15.4.4 Examples

call (integer, 3).
Succeeds.

call (functor(F,c), 0).
Succeeds, unifying F with c.

call(call(call(atom concat, pro), log), Atom).
Succeeds, unifying Atom with prolog.

call(;, X =1, Y = 2).
Succeeds, unifying X with 1. On re-execution,
succeeds, unifying Y with 2.

call(;, (true->fail), X=1).
Fails.

The following examples assume that maplist/2
is defined with the following clauses:

maplist( Cont, []).

maplist (Cont, [E|Es])
call (Cont, E),
maplist (Cont, Es).

maplist (>(3), [1, 21).
Succeeds.

maplist (>(3), [1, 2, 3]).
Fails.

maplist (=(X), Xs).

© ISO/IEC 2012 — All rights reserved 17



ISO/IEC 13211-1:1995/Cor.2:2012(E)

18

Succeeds,
unifying Xs with [].

On re-execution, succeeds,
unifying Xs with [X].

On re-execution, succeeds,
unifying Xs with [X, X].

On re-execution, succeeds,
unifying Xs with [X, X, X].

Ad infinitum.

8.15.5 false/0

8.15.5.1 Description

false is false.

8.15.5.2 Template and modes

false
8.15.5.3 Errors
None.

8.15.5.4 Examples

false.
Fails.

Correct error conditions of atom_chars/2, atom_codes/2, number_chars/2, number_codes/2.

8.16.4.3 Errors (atom_chars/2)

Replace error condition a, ¢, and d. Add error condition e.

a) Atom is a variable and List is a partial list.
— instantiation error.

¢) List is neither a partial list nor a list
— type error(list, List).

d) Atom is a variable and an element of a list prefix of List is a variable.
— instantiation error.

e) An element E of a list prefix of List is neither a variable nor a one-char atom
— type error (character, E).

8.16.5.3 Errors (atom_codes/2)

Replace error condition a, ¢, and d. Add error conditon e and f.

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

a) Atom is a variable and List is a partial list.
— instantiation error.

C) List is neither a partial list nor a list
— type error(list, List).

d) Atom is a variable and an element of a list prefix of List is a variable.
— instantiation error.

e) An element E of a list prefix of List is neither a variable nor an integer
— type error (integer, E).

f) An element of a list prefix of List is neither a variable nor a character code
— representation error(character code).

8.16.7.3 Errors (number_chars/2)

Replace error condition a, ¢, and d. Add error conditon f.

a) Number is a variable and List is a partial list.
— instantiation error.

c) List is neither a partial list nor a list
— type error(list, List).

d) Number is a variable and an element of a list prefix of List is a variable.
— instantiation error.

f) An element E of a list prefix of List is neither a variable nor a one-char atom
— type error (character, E).

8.16.8.3 Errors (number_codes/2)

Replace error conditions a, ¢, and d. Add error condition f and g.

a) Number is a variable and List is a partial list.
— instantiation error.

¢) List is neither a partial list nor a list
— type error(list, List).

d) Number is a variable and an element of a list prefix of List is a variable.
— instantiation error.

f) An element E of a list prefix of List is neither a variable nor an integer
— type error (integer, E).

g) An element of a list prefix of List is neither a variable nor a character code
— representation error (character code).

Add evaluable functors (+)/1 (unary plus) and (div)/2 (flooring integer division) to simple arithmetic
functors (9.1). Add operators corresponding to (-)/1 and (//)/2 (integer division).

9.1.1

Add to table:

© ISO/IEC 2012 — All rights reserved 19



ISO/IEC 13211-1:1995/Cor.2:2012(E)

20

Evaluable functor Operation
(div) /2 intfloordiv,
(+)/1 pOS), POSE
Add 'div' to enumeration in Note. Add to Note:

'+', " are prefix predefined operators.

9.1.3

Add specifications:
intfloordiv; : I x I — | U {int_overflow, zero_divisor}
pos;: | — |
Add as axioms:
intfloordiv/x,y) = | x/y|
ifyZ0 Axyl €l
= int_overflow
ifyz0 A x| &l
= zero_divisor
ify=0

pos; (x) =X
9.14

Add specification:
posg: F— F
Add as axiom:

pOsk (x) =X

Add evaluable functors max/2, min/2, (")/2, asin/1, acos/1, atan2/2, tan/1. Add evaluable atom
pi/0.
Add the new subclauses into the place indicated by their number:

9.3.8 max/2 — maximum

9.3.8.1 Description

max (X, Y) evaluates the expressions X and Y with values vX and vy and has the value of the
maximum of vX and VY. If vX and vY have the same type then the value R satisfies R € {vXx, vY}.

If vx and vY have different types then let VI and VF be the values of type integer and float. The

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

value R shall satisfy
R e{vi, float (VI), VF, undefined}
and the value shall be implementation dependent.

NOTE — The possible values of f1oat (VI) include the exceptional value float_overflow ¢ F
(9.1.6).

9.3.8.2 Template and modes

max (float-exp, float-exp) = float
max (float-exp, int-exp) = number
max (int-exp, float-exp) = number
max (int-exp, int-exp) = integer

9.3.8.3 Errors

a) X is a variable
— instantiation error.

b) v is a variable
— instantiation error.

¢) vx and vY have different type and it shall be implementation dependent whether this error
condition is satisfied
— evaluation error (undefined).

d) vx and vy have different type and one of them is an integer VI with

float,_,<(v1) = float_overflow (9.1.6) and it shall be implementation dependent whether this error
condition is satisfied

— evaluation error (float overflow) .

9.3.8.4 Examples

max (2, 3).
Evaluates to 3.

max (2.0, 3).
Evaluates to 3, 3.0, or evaluation error(undefined).
[The result is implementation dependent.]

max (2, 3.0).
Evaluates to 3.0 or evaluation error (undefined).
[The result is implementation dependent.]

max (0, 0.0).

Evaluates to 0, 0.0, or evaluation error (undefined).
[The result is implementation dependent.]

9.3.9 min/2 — minimum

9.3.9.1 Description

© ISO/IEC 2012 — All rights reserved 21



ISO/IEC 13211-1:1995/Cor.2:2012(E)

22

min (X, Y) evaluates the expressions X and Y with values vx and vy and has the value of the
minimum of VX and VY. If vX and vY have the same type then the value R satisfies R € {VX, vY}.

If vx and vY have different types then let VI and VF be the values of type integer and float. The
value R shall satisfy

R e{vi, float (VI), VF, undefined}

and the value shall be implementation dependent.

NOTE — The possible values of f1oat (VI) include the exceptional value float_overflow ¢ F
(9.1.6).

9.3.9.2 Template and modes

min (float-exp, float-exp) = float

min(float-exp, int-exp) = number

min (int-exp, float-exp) = number
( =

min (int-exp, int-exp) integer

9.3.9.3 Errors

a) X is a variable
— instantiation error.

b) Y is a variable
— instantiation error.

¢) vx and vY have different type and it shall be implementation dependent whether this error
condition is satisfied
— evaluation error (undefined).

d) vx and vY have different type and one of them is an integer VI with

float, (V1) = float_overflow (9.1.6) and it shall be implementation dependent whether this error
condition is satisfied

— evaluation error (float overflow) .

9.3.9.4 Examples

min (2, 3).
Evaluates to 2.

min(2, 3.0).
Evaluates to 2, 2.0, or evaluation error(undefined).
[The result is implementation dependent.]

min(2.0, 3).
Evaluates to 2.0 or evaluation error (undefined).
[The result is implementation dependent.]

min(0, 0.0).
Evaluates to 0, 0.0, or evaluation error (undefined).
[The result is implementation dependent.]

9.3.10 (*)/2 — integer power

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

9.3.10.1 Description

~ (X, Y) evaluates the expressions X and Y with values vX and vy and has the value of vx
raised to the power of VY. If vX and VY are both zero then the value shall be one.

9.3.10.2 Template and modes

~(int-exp, 1int-exp) = integer
~(float-exp, int-exp) = float
~(int-exp, float-exp) = float
~“(float-exp, float-exp) = float

NOTE — "M is an infix predefined operator (see 6.3.4.4).

9.3.10.3 Errors

a) X is a variable
— instantiation error.

b) Y is a variable
— instantiation error.

c) VX is negative and VY is neither an integer nor a float with an integer value.
— evaluation error (undefined).

d) vx is zero and VY is negative
— evaluation error (undefined) .

e) VX and VY are integers and VX is not equal to 1 and VY is less than -1.
— type error (float, VX).

f) vx or vY is a float and the magnitude of vXx raised to the power of vy is too large
— evaluation error (float overflow) .

g) vx or vY is a float and the magnitude of VX raised to the power of VY is too small and not zero
— evaluation error (underflow) .

9.3.10.4 Examples

~(0,0).
Evaluates to 1.

371.0.
Evaluates to 3.0.

373.
27.

3727.
Evaluates to 7625597484987.

37373,
Evaluates to 7625597484987.

27 (-1) .
evaluation error (undefined) .

© ISO/IEC 2012 — All rights reserved 23



ISO/IEC 13211-1:1995/Cor.2:2012(E)

24

1~(=1).
Evaluates to 1.

070.
Evaluates to 1.

2~ =-1.5.
Evaluates to a value approximately
equal to 0.353553.

9.3.11 asin/1 — arc sine

9.3.11.1 Description

asin (X) evaluates the expression x with value vx and has the principal value of the arc sine of

VX (measured in radians), that is, the value R satisfies

-Mm2<R<T/2

9.3.11.2 Template and modes

asin(float-exp) = float
asin(int-exp) = float

9.3.11.3 Errors

a) X is a variable
— instantiation error.

b) vx is greater than 1 or less than -1
— evaluation error (undefined).

9.3.11.4 Examples

asin(0.5).
Evaluates to a value approximately
equal to 0.523599.

2*asin (1) .
Evaluates to a value approximately

equal to 3.14159.

asin(2) .
evaluation error (undefined) .

9.3.12 acos/1 — arc cosine

9.3.12.1 Description

© ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

acos (X) evaluates the expression x with value vx and has the principal value of the arc cosine
of VX (measured in radians), that is, the value R satisfies
O<R=sT

9.3.12.2 Template and modes

acos (float-exp) = float
acos (int-exp) = float
9.3.12.3 Errors

a) X is a variable
— instantiation error.

b) vx is greater than 1 or less than -1
— evaluation error (undefined) .

9.3.12.4 Examples

acos(-1).
Evaluates to a value approximately
equal to 3.141509.

acos (0.5) .
Evaluates to a value approximately

equal to 1.047197.

acos(l.5).
evaluation error (undefined) .

9.3.13 atan2/2 — arc tangent

9.3.13.1 Description

atan2 (Y, X) evaluates the expressions Y and x with values vy and vx and has the principal
value of the arc tangent of vy /vx (measured in radians), using the signs of both arguments to
determine the quadrant of the value R, that is, the value R satisfies

S-T<SRS<T

9.3.13.2 Template and modes

atan2 (int-exp, int-exp) = float
atan2 (float-exp, int-exp) = float
atan2 (int-exp, float-exp) = float
atan2 (float-exp, float-exp) = float

9.3.13.3 Errors

a) X is a variable
— instantiation error.

© ISO/IEC 2012 — All rights reserved 25



ISO/IEC 13211-1:1995/Cor.2:2012(E)

b) Y is a variable
— instantiation error.

C) X is equal to zero and Y is equal to zero
— evaluation error (undefined) .

9.3.13.4 Examples

atan2(1,0).
Evaluates to a value approximately
equal to 1.570796.

atan2(0,-1).
Evaluates to a value approximately
equal to 3.14159.

atan2(0,0) .
evaluation error (undefined) .

9.3.14 tan/1 — tangent

9.3.14.1 Description

tan (X) evaluates the expression X with value vx and has the value of the tangent of vx
(measured in radians).

9.3.14.2 Template and modes

tan(float-exp) = float
tan (int-exp) = float

9.3.14.3 Errors

a) X is a variable
— instantiation error.

9.3.14.4 Examples

tan(0.5).
Evaluates to a value approximately
equal to 0.5463.

9.3.15 pi/0 — pi
9.3.15.1 Description

pi has the value of T which is the ratio of a circle's circumference to its diameter.

9.3.15.2 Template and modes

26 © ISO/IEC 2012 — All rights reserved



ISO/IEC 13211-1:1995/Cor.2:2012(E)

pi = float

9.3.15.3 Errors

None.

9.3.15.4 Examples

pi
Evaluates to a value approximately
equal to 3.14159.

Add evaluable functor xor/2.
Add the new subclauses into the place indicated by their number:

9.4.6 xor/2 — bitwise exclusive or

9.4.6.1 Description

xor (B1, B2) evaluates the expressions B1 and B2 with values VB1 and VB2 and has the value
such that each bit is set iff exactly one of the corresponding bits in VB1 and VB2 is set.

The value shall be implementation defined if VvB1 or VB2 is negative.

9.4.6.2 Template and modes

xor (int-exp, int-exp) = integer

9.4.6.3 Errors

a) B1 is a variable
— instantiation error.

b) B2 is a variable
— instantiation error.

c) B1 is not a variable and VB1 is not an integer
— type_error (integer, VBI).

d) B2 is not a variable and VB2 is not an integer
— type error (integer, VB2).

9.4.6.4 Examples

xor (10, 12).
Evaluates to the value 6.

xor (125, 255).
Evaluates to the value 130.

xor (=10, 12).

© ISO/IEC 2012 — All rights reserved 27



ISO/IEC 13211-1:1995/Cor.2:2012(E)

Evaluates to an implementation defined value.

28

© ISO/IEC 2012 — All rights reserved



	Information technology - Programming languages - Prolog - Part 1:  General Core TECHNICAL CORRIGENDUM 2
	6.3.4.3 Operators
	6.3.4.4
	6.4 Tokens
	6.4.8 Other tokens
	6.5.3 Solo characters
	7.1.1.5 Witness variable list of a term
	7.1.6.9 List prefix of a term
	7.8.3.4 example no. 6
	7.8.9 catch/3
	7.8.9.2 Template and modes
	7.8.9.3 Errors
	7.8.9.2 Template and modes
	7.8.9.3 Errors
	7.9.1 Description (Evaluating an expression)
	7.9.2 Errors (Evaluating an expression)
	7.12.2 Error classification
	8.1.3 Errors (The format of built-in predicate definitions)
	8.2.4 subsumes_term/2
	8.2.4.1 Description
	8.2.4.2 Template and modes
	8.2.4.3 Errors
	8.2.4.4 Examples
	8.3.9 callable/1
	8.3.9.1 Description
	8.3.9.2 Template and modes
	8.3.9.3 Errors
	8.3.9.4 Examples
	8.3.10 ground/1
	8.3.10.1 Description
	8.3.10.2 Template and modes
	8.3.10.3 Errors
	8.3.10.4 Examples
	8.3.11 acyclic_term/1
	8.3.11.1 Description
	8.3.11.2 Template and modes
	8.3.11.3 Errors
	8.3.11.4 Examples
	8.4 Term comparison, 8.4.1
	8.4.2 compare/3 – three-way comparison
	8.4.2.1 Description
	8.4.2.2 Template and modes
	8.4.2.3 Errors
	8.4.2.4 Examples
	8.4.3 sort/2
	8.4.3.1 Description
	8.4.3.2 Template and modes
	8.4.3.3 Errors
	8.4.3.4 Examples
	8.4.4 keysort/2
	8.4.4.1 Description
	8.4.4.2 Template and modes
	8.4.4.3 Errors
	8.4.4.4 Examples
	8.5.5 term_variables/2
	8.5.5.1 Description
	8.5.5.2 Template and modes
	8.5.5.3 Errors
	8.5.5.4 Examples
	8.9.3.3 Errors (retract/1)
	8.9.5 retractall/1
	8.9.5.1 Description
	8.9.5.2 Template and modes
	8.9.5.3 Errors
	8.9.5.4 Examples
	8.11.5.3 Errors (open/4, open/3)
	8.14.3.3 Errors (op/3)
	8.14.3.4
	8.15.4 call/2..8
	8.15.4.1 Description
	8.15.4.2 Template and modes
	8.15.4.3 Errors
	8.15.4.4 Examples
	8.15.5 false/0
	8.15.5.1 Description
	8.15.5.2 Template and modes
	8.15.5.3 Errors
	8.15.5.4 Examples
	8.16.4.3 Errors (atom_chars/2)
	8.16.5.3 Errors (atom_codes/2)
	8.16.7.3 Errors (number_chars/2)
	8.16.8.3 Errors (number_codes/2)
	9.1.1
	9.1.3
	9.1.4
	9.3.8 max/2 – maximum
	9.3.8.1 Description
	9.3.8.2 Template and modes
	9.3.8.3 Errors
	9.3.8.4 Examples
	9.3.9 min/2 – minimum
	9.3.9.1 Description
	9.3.9.2 Template and modes
	9.3.9.3 Errors
	9.3.9.4 Examples
	9.3.10 (^)/2 – integer power
	9.3.10.1 Description
	9.3.10.2 Template and modes
	9.3.10.3 Errors
	9.3.10.4 Examples
	9.3.11 asin/1 – arc sine
	9.3.11.1 Description
	9.3.11.2 Template and modes
	9.3.11.3 Errors
	9.3.11.4 Examples
	9.3.12 acos/1 – arc cosine
	9.3.12.1 Description
	9.3.12.2 Template and modes
	9.3.12.3 Errors
	9.3.12.4 Examples
	9.3.13 atan2/2 – arc tangent
	9.3.13.1 Description
	9.3.13.2 Template and modes
	9.3.13.3 Errors
	9.3.13.4 Examples
	9.3.14 tan/1 – tangent
	9.3.14.1 Description
	9.3.14.2 Template and modes
	9.3.14.3 Errors
	9.3.14.4 Examples
	9.3.15 pi/0 – pi
	9.3.15.1 Description
	9.3.15.2 Template and modes
	9.3.15.3 Errors
	9.3.15.4 Examples
	9.4.6 xor/2 – bitwise exclusive or
	9.4.6.1 Description
	9.4.6.2 Template and modes
	9.4.6.3 Errors
	9.4.6.4 Examples

	Blank Page



