
External Documentation and Release Notes for saolc

Eric D. Scheirer

MIT Media Laboratory

eds@media.mit.edu

15 August 1999

saolc version 1.0.1

Abstract

The saolc package is the reference software for the Structured Audio part of the MPEG-4 Audio standard
(ISO 14496-3 Section 5). saolc provides non-real-time decoding of Structured Audio bitstreams, and
demonstrates the proper functioning of a normative SA decoder. The structure of saolc is documented for
implementors who wish to make use of the reference software, beginning at a high-level overview and
proceeding to a list of important data structures and a module-by-module description. Bugs, extensions,
and areas of non-conformance to the paper specification are documented. This documentation augments
the internal documentation provided by comments in the code.

Contents

1. Introduction.. 5
1.1. Scope and Purpose ... 5
1.2. About saolc.. 5
1.3. saolc licensing ... 6
1.4. About this document.. 6

2. saolc usage ... 7
2.1. Introduction... 7
2.2. Command-line syntax .. 7

3. Structure of saolc .. 8
3.1. Introduction... 8
3.2. Basic flow-of-control ... 8

4. Definitions...11

5. Module-by-module description of saolc..12
5.1. Introduction..12
5.2. aifif.c..12
5.3. bitstream.cpp ..12
5.4. byteswap.c..13
5.5. fft.c...13
5.6. fx_picola.c..13
5.7. IEEE80.c ..13
5.8. sa_bitstream.h...13
5.9. sa_decode.cpp...14
5.10. saol.tab.c / saol.yacc..14
5.11. saol.yy.c / saol.lex...15
5.12. saol_co_imp.c...16
5.13. saol_core_opcodes.c ...16
5.14. saol_interp.c ...16
5.15. saol_macro.c...17
5.16. saol_main.cpp...19
5.17. saol_midi.c ...19
5.18. saol_parser.c...20
5.19. saol_rates.c ...20
5.20. saol_sched.c..20
5.21. saol_score.c ..21
5.22. saol_sequence.c ..21
5.23. saol_sfsynth.c ...22
5.24. saol_spatial.c ..22
5.25. saol_syntax.c ..22
5.26. saol_tables.c ...23
5.27. saol_templates.c..23
5.28. saol_tok_table.cpp ..23
5.29. sf_*.cpp..23
5.30. Important data structures...24

6. saolc and the rest of ISO 14496-5...30

7. Bugs and other known issues ...31
7.1. Introduction..31
7.2. Bugs...31
7.3. Features not yet implemented..31
7.4. Features implemented in a non-compliant manner ...31
7.5. Extensions ..32

saolc external documentation 1 June 1999 4/40

7.6. Bugs in the standard that are fixed in saolc ..33
7.7. saolc portability ..33

8. A simple Structured Audio encoder: saenc ...35
8.1. Introduction..35
8.2. Using saenc ..35
8.3. Adding chunks to the decoder configuration header...35
8.4. Adding chunks to the streaming bitstream data ..36

9. References and Credits ..38
9.1. Introduction..38
9.2. Technical references ...38
9.3. Bibliography...39
9.4. Credits..39

saolc external documentation 1 June 1999 5/40

1. Introduction

1.1. Scope and Purpose
This document provides external documentation for saolc, the MPEG-4 reference software for the
Structured Audio tools in ISO/IEC 14496-3, the MPEG-4 audio standard. It is not a tutorial on creating
bitstreams or making music with Structured Audio, but technical documentation to assist developers in
making use of the reference software.

Other resources for developers of tools using MPEG-4 Structured Audio tools include:

- The MPEG-4 Structured Audio homepage at http://sound.media.mit.edu/mpeg4

- The SAOL developers mailing list; send email to saol-dev-request@media.mit.edu to
subscribe

- Publications in the technical literature (see Section 9.2 of this document)

- The MPEG-4 Audio Standard, ISO/IEC 14496-3, available from the International
Standardization Organization at http://www.iso.ch

The functioning of saolc, and the concepts in the Structured Audio part of the MPEG-4 standard, are very
different from those in other audio decoding standards. saolc performs many of the functions of a high-
level language interpreter, and of a software synthesizer, as well as those of an audio decoder. Readers
whose primary expertise is in traditional audio coding may find it difficult initially to grasp all of the
concepts in the SA standard and software; some suggestions for background reading are provided in
Section 9.3.

This document and the saolc code are not meant to serve as a substitute for the MPEG-4 standard text. In
particular, this document assumes that the reader has a general familiarity with the scope, requirements, and
functionalities of the MPEG-4 Structured Audio standard. Readers with no previous exposure to the
standard should begin with the technical papers in Section 9.2 and then skim through the standard before
trying to understand the code.

1.2. About saolc
saolc is the reference software for the MPEG-4 Structured Audio standard (Section 4 of ISO 14496-3),
henceforth called SA. It is not intended to be a user-friendly tool for creation or playback of MPEG-4
bitstreams. It serves the role of providing a demonstration of how to correctly implement all aspects of the
SA toolset in an MPEG-4 decoder. Many optimizations, even obvious ones, have not been applied to this
software, in order to preserve maximum clarity in the coding style. It is expected that future publications in
the technical literature and source-code contributions by the SA community will examine the role of
optimization in SA implementation more fully.

It is important to understand that saolc is not SAOL. SAOL is a computer language for the description of
sound, standardized in MPEG-4. saolc is one implementation of that language, created to serve as a
reference for the standard. Nearly every functionality of SAOL can be properly implemented in a number
of different ways that all produce the same result. saolc does not act to restrict the manner of operation of a
normative terminal, but serves as one example of a properly-implemented SAOL decoder.

saolc was implemented in conjunction with the development of the SA standard, roughly Mar 1997 – May
1999. The primary developer was Eric D. Scheirer from the Machine Listening Group of the MIT Media
Laboratory, but there were a number of other contributing developers, see Section 9.4.

saolc totals approximately 40,000 lines, about one MByte, of C and C++ code. It is widely portable and
has been successfully tested (as of June 1999) on win32, DEC Alpha, SGI, PowerMac, Linux, OS/2, and
DECStation platforms. The only major porting issue is the availability of the C++ standard template
library – the vector template is needed to compile the bitstream-processing code. It has been extensively
checked for word-size and word-order portability. See Section 7 for a description of modules known to be
problematic to compile on various architectures.

saolc external documentation 1 June 1999 6/40

saolc includes extensive internal documentation (comments) as well as this external documentation. The
‘hard parts’ of the standard are internally documented more carefully than the ‘easy parts’.

Every effort has been made to have a robust and stable platform for the reference software; however, it is
expected that in a software effort of this magnitude, bugs and areas of non-conformance will remain. Bug
reports and other offers to help clarify issues in the software are always appreciated, and can be sent to
saol-bugs@media.mit.edu. The current list of known bugs and other issues is in Section 7.

1.3. saolc licensing
The official reference-software release of the saolc code is under the licensing terms demanded by MPEG
and the ISO. Thus, each source code file in the reference-software release begins with a license statement
asserting that the MIT Media Laboratory et al. are the owners of the software and release it to ISO only for
the purpose of developing tools complying to the MPEG-4 standard. If your copy of the code has these
license statements, you must not remove the license statements or distribute the code. Only the ISO may
distribute code under this license.

In addition to the code released to ISO, the vast majority (more than 95%) of the code in saolc has been
released into the public domain by its developers. The most recent public-domain version of the code,
which contains no code licenses, can be downloaded from the Structured Audio homepage noted in Section
1.1. This code release is performed as a service to the computer-music and SA communities. However, it
is important to note the following:

Only the reference software purchased from ISO as part of ISO/IEC 14496-5 has
official MPEG status. The public-domain source release may be useful in other ways,
but it is not part of the reference software for ISO 14496-3. For the construction of
fully-compliant MPEG-4 tools, it is imperative to understand the differences, if any,
between the reference software in ISO/IEC 14496-5 and various open-source versions
of similar software. The public-domain software must not be used for testing
conformance of an MPEG-4 application that is desired to be fully compliant.

For the code in the public-domain release, there are no restrictions placed on its use. It may be used by any
individual or organization for any personal or commercial purpose. The code in the public-domain release
has no licensing statement at the beginning of the source modules.

1.4. About this document
This document is structured as follows. Section 2 provides brief man-page style usage instructions for
saolc. Section 3 gives a general overview of the structure and functioning of saolc. Section 4 provides
definitions of implementation-specific terms for concepts in saolc. Section 5 provides a module-by-module
overview of saolc, going into relationships between modules and their primary functions. Section 6
discusses the relationship of saolc to other reference software in ISO/IEC 14496-5. Section 7 presents
bugs and other known issues with saolc. Section 8 describes the saenc tool for creating MPEG-4
Structured Audio bitstreams that is included in the saolc package. Section 9 provides references, credits,
and a bibliography for introductory and further reading.

In many places in this document, the MPEG-4 Standard is used as a reference to explain or document some
point. If not otherwise stated, references of the form “Clause 5.X” or “Subclause 5.X.X.X” are references
to the MPEG-4 Structured Audio standard, ISO/IEC 14496-3:1999 Section 5.

saolc external documentation 1 June 1999 7/40

2. saolc usage

2.1. Introduction
This section provides usage instructions for saolc – that is, how to use the saolc executable to decode MP4
bitstreams and otherwise perform synthesis.

2.2. Command-line syntax
saolc is run from the command line with the following syntax:

saolc –orc saolfile [options] or
saolc –bit bitstream [options]

where [options] are any of:
-sco saslfile
–midi midifile
–verbose
–text
–out soundfile
–in infile
–temp directory
–iq quality
–sbank0 sasbf
–sbank1 sasbf
–segfault
-version

At least one of –midi, -sco, -bit or –in must be provided.

The options are interpreted as follows:

-bit bitstream : Decode the MP4 bitstream given in the file (normative operation).

-orc saolfile : Use the given file as a SAOL orchestra in the textual format.

-sco saslfile : Use the given file as a SASL score in the textual format.

-verbose : Generate extra warnings and debugging information.

-text : Dump the output samples to stdout as floating-point numbers.

-out soundfile : Make an AIFF soundfile with the output sound.

-in infile : Use the given AIFF soundfile as input. This option may be used multiple times,
in which case the multiple input files are used as multiple channels of input.

-temp directory : Place temporary files created by bitstream processing in the given directory.

-iq quality : Use the specified quality for “high-quality” interpolations (default is “3”,
higher values give better sound quality but compute more slowly).

-sbank0/1 : Use the given DLS-2 bank files as SASBF banks in the orchestra.

-segfault : Dump core or cause GPF on run-time error (useful for debugging).

-version: Print out the version (revision number) of saolc.

Only the –bit option describes a normative mode of operation for the decoder. The other modes are
provided for convenience, but other implementations are not required to support textual decoding, or
processing input sounds from the command line (see also Section 7.5).

The C preprocessor or other text-munging utility can be used to preprocess SAOL files in conjunction with
the –orc command. If the environment variable SAOL_CPP is set to the name of the preprocessor (for
example, “/usr/sbin/cpp”) when saolc is executed, the command “$SAOL_CPP < saolfile >
temp.sao” is executed before SAOL decoding, and then temp.sao is used as the orchestra input.

saolc external documentation 1 June 1999 8/40

3. Structure of saolc

3.1. Introduction
This section describes the overall structure and function of saolc. All readers should begin with this section
in order to gain an understanding of the general operation of the decoder/interpreter. Occasional reference
will be made to specific modules and functions, and an inclusive list is provided in Section 5. Section 3.2
provides a “top-down” perspective on the construction and flow-of-control of saolc. Section 5.30 describes
the key data structures that are used to represent the decoder status and keep track of the scheduler.

There are many ways in which other compliant implementations might differ from saolc. An
implementation that compiles code onto a DSP for direct execution would necessarily have much more
preprocessing (since it would have to perform code generation and optimization as well as parsing and
syntax checking), but much less run-time code, since the run-time code would be an external library linked
with the bitstream SAOL algorithms. saolc doesn’t really live in a streaming environment; it pretends to
expose an interface to a network with the receive_au() function in sa_bitstream.cpp, but this
function only reads data out of a file. In a real streaming decoder, the interface to Systems would be more
complex, and the error checking and real-time demands much higher.

The main core of saolc is implemented in ANSI C. Some contributed components— the bitstream-
processing functions developed by Columbia University, the SASBF synthesizer contributed by Creative,
and the DLS-format parser contributed by Microsoft— were originally written in C++. Therefore, the
overall system is in integrated C and C++. In practice, there is relatively little exposure and interconnection
among these pieces, so the language integration is not difficult.

3.2. Basic flow-of-control
Figure 1 shows a schematic overview of the major modules and data structures in saolc. This flowchart
shows only the normative operation of saolc, in which it reads a disk file containing bitstream data. saolc
also implements standalone modes of operation, in which it reads orchestra and score files directly from
disk. These modes will be described in Section 7.5.

3.2.1. Decoder configuration
The main program (saol_main.cpp) executes initial session startup, and then calls the bitstream parser to
deal with the decoder configuration header (process_bitstream() in sa_decode.cpp).
process_bitstream() uses the fundamental bitstream-parsing routines in sa_bitstream.cpp to read
the bitstream (from a file) and dump textual orchestra files, score files, Standard MIDI files, samples, and
SASBF blocks to disk space for temporary storage.

After the decoder configuration header is parsed, the SAOL parser reads in the orchestra file, tokenizes it,
and builds a syntax tree. Tokenization is the term for converting the sequence of characters in the orchestra
file into a structured sequence of keywords, variable names, punctionation marks, etc. The tokenization is
performed with a lexer (lexical analyzer) written in the lex language. lex is a special tool that reads a
lexical language description and generates C code. The lex code for SAOL – that is, the formal lexical
description of saol – lives in saol.lex, and the lex tool generates a C code file called saol.yy.c. This
source file is very difficult to understand (it consists mostly of automatically-generated jump tables) and
should not be modified by hand. If it is necessary to modify the lexer, saol.lex should be modified and
recompiled with lex. lex is available as a standard utility on all Unix platforms, but is not needed to build
saolc unless saol.lex is modified.

The syntax tree is built from a parser written in the yacc language. yacc is a special tool, often used in
conjunction with lex, called a parser-generator. yacc accepts a formal syntactic description of a
programming language in a format similar to the Backus-Naur format used in the Structured Audio
standard to describe SAOL, and produces as output C code that parses that programming language. The
yacc code for SAOL lives in saol.yacc, and is used to generate a C code file called saol.tab.c. Like
saol.yy.c, this file is difficult to understand, and should not be modified by hand. Note that when saolc

saolc external documentation 1 June 1999 9/40

is built, saol.yy.c is #included rather than linked with saol.tab.c. (Also, the code generated by
many versions of lex and yacc will generate compiler warnings under an ANSI compiler; these should be
ignored, as they are harmless and very difficult to fix).

The yacc parser uses auxiliary functions that live in saol_parser.c to build the syntax tree. The
auxiliary functions do simple things like allocate data structures and link them together properly.

After the syntax tree is constructed, it is syntax-checked to ensure that opcode calls have the right number
of parameters, user-defined opcodes actually exist in the orchestra, and so forth. This module
(saol_syntax.c) also performs the important function of building the symbol table for each instrument
and user-defined opcode. The symbol table is a list of all the variable names that are used in the
instrument, their rate type, and their array size. The next module (saol_rates.c) checks all of the
statements and expressions in the orchestra to make sure that the rates of the variables match up – that is,
that asig variables are not used as parameters to kopcode opcodes, and other sorts of rules described in
Clause 5.8 of the standard.

The final step of the orchestra pre-processing is to demacroize the user-defined opcodes. Since user-
defined opcodes may not be recursive (Clause 5.8.6.7.6), it is always possible to implement them as macro-
expansion with appropriate renaming (although of course it is not required to implement them this way).

Main

Bitstream parser

SAOL syntax

checker

SAOL parser Scheduler

SAOL rate

checker

SAOL

demacroizer

SAOL static

optimizer

Interpreter

Core tablegens

SAOL

parse

tree

Event

list

Active

instance

list

Core opcodes
Core opcodes

Core opcodes
Core opcodes

Session

startup sa_bitstream.cpp

sa_decode.cpp

saol.lex
saol.yacc
saol_parser.c

saol_syntax.c

saol_rates.c

saol_macro.c

(not implemented)

saol_main.cpp

saol_main.cpp

saol_sched.c

saol_interp.c

saol_co_imp.c
saol_core_opcodes.c

saol_tables.c

SASBF

synthesizer

saol_sfsynth.c
sf_*.cpp

Run-time decoding

Decoder configuration

Figure 1: Basic flow-of-control in saolc. Rectangular boxes represent modules, hexagonal boxes
represent data structures. Solid arrows represent program flow and module-to-module connections;
dashed arrows represent reading and writing of data. On the left, the decoder configuration process

executes at session startup to create the SAOL parse tree, which is the data structure that represents the
orchestra code. On the right, the run-time decoding process manages a continuing interaction between
the scheduler and the interpeter. The interpreter reads the parse tree, and makes use of the various core

opcode implementations, the table generators, and the SASBF synthesizer as needed.

saolc external documentation 1 June 1999 10/40

The code in saol_macro.c performs this function, thereby removing all of the user-defined opcodes from
the orchestra (the –verbose flag may be used to view the demacroized orchestra before synthesis). This
step makes direct interpretation of the SAOL code easier, since procedural frames don’t have to be
managed. The demacroization step requires careful renaming and management, especially in the handling
of opcode arrays, so the code in saol_macro.c is somewhat complex.

At this point, static optimization of the SAOL code could be performed with standard techniques as found
in the literature. The only optimization performed in saolc is the removal of variables from the symbol
tables of instruments (remove_unused_symbols() in saol_syntax.c) in which they are not used; this
speeds up synthesis a lot for some instruments.

If there are score files or MIDIfiles in the bitstream header, they are parsed by functions in
saol_score.c. Each MIDI event or line of the score file becomes an event; all of the events are stored in
an event list that is managed at run-time by the scheduler.

3.2.2. Run-time decoding
Run-time decoding switches control back and forth between saol_sched.c and saol_interp.c. The
general breakdown is that saol_sched.c contains functions dealing with the scheduler and other issues
pertaining to the whole orchestra, while saol_interp.c contains functions dealing with synthesis of
individual notes. Most of the normative scheduler description in Clause 5.7 is contained in
saol_sched.c, while most of the semantics of the expressions and statements of SAOL in Clause 5.8 is
contained in saol_interp.c.

saol_sched.c calls receive_au() in sa_decode.cpp to “receive” access units (AUs) from the
systems layer, which is implemented by simply reading them from the MP4 file. The AUs contain events
which are registered into a time-sorted event list. At each time step, the scheduler deals with any events
that are ready (according to their timestamps) to be dispatched. The events do things like start up new
instrument instances (new_instr_instance() in saol_interp.c), destroy existing ones, or control
exposed variables. At each time step, for each active instrument instance, the scheduler calls
run_kacycle() in saol_interp.c once at the k-rate, and several times at the a-rate, to do the synthesis
itself.

run_kacycle(), in saol_interp.c, calls eval_block() as the main point of entry to SAOL
interpretation. eval_block() and eval_expr() walk down the SAOL parse tree that was created at
decoder configuration time to calculate the output of an instrument instance. eval_block() and
eval_expr() are mutually-recursive; eval_expr() in particular is highly recursive, as is the nature of a
recursive-descent interpreter. saol_interp.c makes calls to functions in saol_co_imp.c (“SAOL
core-opcode implementations”) and saol_tables.c to execute core opcodes and generate wavetables. If
the sasbf expression is used by the orchestra, saol_interp.c calls sbsynth(), in saol_sbsynth.c, to
perform SASBF sample-bank synthesis. sbsynth() calls functions in the SASBF synthesizer, which
lives in files named sf_*.cpp.

The output of the orchestra is managed by instr_output() in saol_sched.c. Each instrument
instance calls this function to add output to the global output buffer, unless the special bus output_bus is
used (Clause 5.7.3.3.6 list item 11). At the end of each k-cycle, the global orchestra output is calculated
and dumped to a file or to stdout. Hooks are in place to provide real-time output using the function
soundOutQueue(), but this function is not currently provided. To make real-time output to the DAC on a
particular platform, implement the soundOutOpen(), soundOutClose(), and soundOutQueue()
functions as noted in the code. And either optimize saolc a lot, or have a really fast computer.

saolc external documentation 1 June 1999 11/40

4. Definitions
This section contains some definitions useful for understanding the discussion elsewhere in this document.
Also see Clause 5.3 of the standard.

Context: The context of an instrument instance is the current values of all the variables in that instance, and
the current state of all of the opcodes called by that instance.

Event: An event is one of the instructions delivered in a score or MIDI file (or streaming score or MIDI
event) that controls the decoder by asking for a new note or changing a control parameter.

Handle: A handle is the data structure that keeps track of all the information about an active instrument
instance. This includes the context, the label (which allows the instance to receive control events), the
MIDI channel the note is on if any, the amount of time the note has been executing, and some other things.
Handles are kept in a list of active instrument instances that is sorted by the execution sequence order of the
instruments.

Instrument instance: An instrument instance is the data keeping track of one “note” of synthesis. It is
created in response to a score instr event or a MIDI noteon event.

Note: Another name for an instrument instance.

Parse tree: The data structure that organizes the SAOL code in a way easily interpreted. The first step in
decoding is to convert the SAOL orchestra into a parse tree through lexical analysis (Section 5.11) and
parsing (5.10). During run-time, the interpreter looks at the parse tree to figure out what the code says.

Terminal: (1) The hardware/software system that is doing the decoding. (2) A leaf of the parse tree; that is,
a variable name or numeric constant.

saolc external documentation 1 June 1999 12/40

5. Module-by-module description of saolc

5.1. Introduction
This section contains a short description of each of the code modules making up saolc. For each, the basic
purposes of the functions contained in that module are described. Where appropriate, specific functions are
highlighted and described briefly. For functional descriptions at a finer level of detail, please refer to the
comments in the code itself. The author of each module is credited here (see Section 9.4 for a complete
list) – uncredited modules are by Eric Scheirer of the MIT Media Laboratory.

The modules are listed here in ASCII alphabetical order. See Section 3.2 for a more functional description
of the connections between many of the modules. saol_main.cpp contains the top-level main()
function.

Not every module listed here is available for public release. Thus, some of the modules here are missing in
the public-domain source release and are available only through the ISO (see Section 1.3).

Following the list of code modules, the final part of this section contains a description of the important data
structures used in saolc.

5.2. aifif.c
aifif.c contains code that reads and writes AIFF audio files. It is used to read sample data and input data
from disk files, and to write out the final output of the orchestra if the –out option is used.

This module was written by Dan Ellis and was stolen from the public Csound code for use in saolc.

The functions here are used mostly by the main scheduler loop in saol_sched.c as it pulls in data from
input files and writes out the output.

5.3. bitstream.cpp
bitstream.cpp contains the methods for the Bitstream class. It was contributed by Alexandros
Eleftheriadis and his colleagues at Columbia University. Bitstream is used to hold the information
about the binary bitstream file; its methods are used for reading and writing the bitstream format.
Important public methods are the constructor (Bitstream::Bitstream()), which opens the bitstream
file for reading or writing, getbits() and putbits(), which get or put a fixed number of bits from or to
the bitstream file, and getfloat() and putfloat(), which get or put floating-point values from the
bitstream.

The Bitstream class is used by the classes in sa_bitstream.h to read and write bitstream elements of
the SA bitstream. The distinction between these modules is that the Bitstream class is low-level and
doesn’t know that this is an SA bitstream; the sa_bitstream classes are semantically tied to the elements
of the SA bitstream as described in Clause 5.2.

There is sometimes not enough error-checking in these functions; this can cause mysterious bugs in the
following way. Since you can’t really put 1 bit at a time into a file, the inner workings of putbits()
buffer up data until full bytes are stored, and then put out these full bytes. The buffering is done with
bitwise operations. So sometimes invalid bitstream method calls can have “pre-causal” effects; that is, to
affect bits earlier than their target. So for example:

bit.putbits(0x00, 1); /* data, number of bits */
bit.putbits(0x00, 1);
bit.putbits(<garbage>, <garbage>); /* bad call */

When we inspect the binary data generated by this sequence, we find that the first bit is 1 rather than 0 as
we expect (we expect it to start 00... in binary). In trying to debug this problem, we naturally focus on the
first call, since this is the call that “generates” the first bit. We become mystified (speaking from
experience), since this call appears to be fine. In fact, it is fine; the problem is that since the buffer wasn’t
flushed between the second and third calls, the bad third call corrupted the whole buffer, leading to the

saolc external documentation 1 June 1999 13/40

error. (The error is not that the buffer wasn’t flushed— if we flush the buffer after the second call, we get a
whole bunch of extra 0 bits to round out the incomplete byte). The moral is to, when debugging bitstream
weirdness, look at all of the calls to putbits() in the region surrounding the error before becoming too
paranoid about single-stepping the code. The debugging printf()s commented out in putbits() and
getbits() are useful for this purpose.

5.4. byteswap.c
byteswap.c was contributed by Dan Ellis as part of the Csound code. It is used to byteswap data as it is
read out of AIFF files into the proper format for the local architecture. This should be integrated somehow
with byteswapping in other parts of the code, really. It is called by functions in aifif.c and isn’t of
general interest.

5.5. fft.c
fft.c was contributed by Dan Ellis; it was borrowed from the Csound public source. The code in fft.c
calculates the DFT and IDFT using the Fast Fourier Transform. It is called only by the implementations of
the core opcodes fft() and ifft(). This code may be buggy for non-power-of-2 FFT size, but that’s the only
case required in SAOL anyway.

5.6. fx_picola.c
fx_picola.c was contributed by Naoya Tanaka from Matsushita. It implements the PICOLA speed-
change function described in Annex 5.D. PICOLA is one possible method for implementing the
fx_speedc() and speedt() core opcodes. It is not the only permissible method; there is a fair technical
literature on different methods for implementing speed-change.

The description in Annex 5.D of the standard provides more detail on the functioning of the PICOLA
algorithm.

This code is currently only partly-functional, and is not included in the public-domain software release.

5.7. IEEE80.c
IEEE80.c was written by Bill Gardner for the Csound public code. It provides extra functions to aifif.c
– for some reason, the AIFF format has a couple of fields (sampling rate, in particular) that must be coded
in the weird IEEE-80 floating-point format, and it takes a little bit of work to get and put these data
properly.

5.8. sa_bitstream.h
sa_bitstream.h contains all the class definitions for the SA bitstream format, which is defined in Clause
5.2. The basic structure of this code looks funny, because the first version was automatically generated by
the flavor tools donated to MPEG by Columbia University. This is why the variable names are weird in
some of the functions. Most of the recent modifications were done by hand since the SA format is fairly
simple. The Flavor code used to define the format in Clause 5.2 should generate similar code to what’s
there now; the important difference is in the way multiple data blocks within a chunk (for example,
multiple score lines in a chunk) are managed. As of flavor v.2, this generated fixed arrays which are hard
to manage (these are still left for some of the classes) – the fixed arrays were changed by hand to vectors
for better dynamic management.

Each class declared in sa_bitstream.h represents one syntactic element of the SA bitstream format. The
order of elements reflected Clause 5.2 – the simple (low-level) elements like tokens are at the beginning,
and the important high-level elements like the decoder configuration header are towards the end. Each
class has a get() method and a put() method that call the bitstream methods in bitstream.h to get and
put that element from and to the bitstream file.

saolc external documentation 1 June 1999 14/40

The classes are nested like complex structures, not inherited like objects. That is, an orc_file object
contains a whole bunch of orc_token objects that represent the sequence of tokens in the orchestra. In
turn, one or several orc_file objects are contained in a SA_decoder_config object.

The put() methods are used by saenc, the simple SA encoder included in the saolc distribution; see
Section 8.

5.9. sa_decode.cpp
sa_decode.cpp is the top-level interface to the SAOL bitstream. This module contains the functions that
the main decoder calls to get information from the bitstream. It instantiates SA_decoder_config and
SA_access_unit objects as defined in sa_bitstream.h, and uses their get() methods to fill them up
with data.

There are two main exposed interfaces. process_header() reads in the decoder configuration header
and then dumps out all the data to temporary files so that it can be read and parsed (it would naturally be
possible to parse directly from the bitstream data, but saolc doesn’t choose to do that). receive_au()
reads in all the Access Units that have “arrived” at a certain time (as marked by their Decoding Time
Stamps).

We always keep the next AU cached if there are any left. Thus, at decoder configuration, we grab the first
AU and cache it. When we process AUs in receive_au(), we first check to see if it’s time to deal with
the cached AU. If so, we deal with that AU (which means creating a scheduler event to do whatever it
says), then get the next one and see if its time to deal with that one too. If so, we loop until we get one that
isn’t ready to be decoded. Then we cache that one and return. This works since the AUs have to be in
order (since conceptually, they’re coming in on the wire).

The auxiliary functions figure out how to deal with the events in each AU.

It is important to note that the AU format read by saolc contains simple packaging (just an extra time-stamp
at the beginning) to hold the DTS, which is properly part of the systems syntax. Sooner or later, the MP4
file format will be supported and then the AU parsing will be fixed. The file format read by saolc is not the
official MP4 file format – it’s much simpler than MP4, which contains lots of packaging intended to make
editing and manipulating the file useful.

5.10. saol.tab.c / saol.yacc
saol.tab.c is automatically created by the yacc tool, see Section 3.2.1. It’s really hairy and you
shouldn’t deal with it by hand unless you’re really sure of yourself.

The input file to yacc is saol.yacc. This file contains the SAOL grammar in the yacc format. It is an
expansion of the one included in Annex 5.B. Most importantly, it contains a lot of added error
productions that help to locate syntax errors in the SAOL code.

The individual “paragraphs” in saol.yacc correspond approximately to the BNF grammar for SAOL as
broken out in Clause 5.8. Each paragraph describes the syntax of one element of SAOL, and how to create
the parse tree for that element. To take one example:

statement : lvalue EQ expr SEM {
statement *st;
long i;
st = new_statement(EQ,ptr_index($3),NULL);
set_statement_lvalue(st,ptr_index($1));
i = add_ptr_index(st);
$$ = i;
}

This is the code that corresponds to the production

<statement> -> <lvalue> = <expr> ;

which is in Subclause XXX. Statements that match this production look like

saolc external documentation 1 June 1999 15/40

a[p*4] = 3;
q = z;
mysig[midicps(pch)] = myop[3](midicps(pch),foo);

That is, this sort of statement has some expression (the lvalue), followed by an =, followed by some other
expression, followed by a ; (note the relationship between this description and the first line of the quoted
yacc code).

The code block following the production (in the { } brackets) describes how to create a parse tree element
for this little bit of code. Each of the matching subexpressions is numbered with $x in yacc. So within the
code block, the lvalue expression is denoted $1, the = with $2, the right-hand expression with $3, and the
semicolon with $4. When yacc converts the yacc code to C code, it turns these metavariables into regular
variables depending on the context.

The rest of the code that follows calls regular C functions (most of which live in saol_parser.c) to
create the tree from the subelements. This is a inductive process; once we’re executing this yacc code,
we’ve already executed the code to parse the subproductions (the lvalue and right-hand expressions in this
case). So all the code does is make a new statement (with new_statement(), in saol_parser.c) of
type EQ using the right-hand expression as a parameter, and then sets the lvalue of the statement to the
lvalue parameter. The $$ = i line means that the “return value” of this piece of syntax is the value i. This
is the value that becomes the $x value at the next higher induction level.

The ptr_index() and add_ptr_index() functions are used to keep track of all the subexpressions by
number, since yacc is most happy passing longs rather than void pointers around. See the comments on
these functions in saol_parser.c for more details.

The whole parser created by yacc from saol.yacc generates a single public function, yyparse().
yyparse() is called by the main function to parse the textual SAOL code. Note that unlike the rest of the
decoder, yyparse() is not re-entrant (it uses global variables), and so only one parsing process may run
at once. The run-time parts of saolc are re-entrant, and so once the parsing is complete, multiple decoding
processes may be run at the same time.

If you wanted to add new non-normative syntax to saolc (for example, a for loop construction like the one
in C), you’d start by adding any new keywords in saol.lex, then add the syntax in saol.yacc, then add
the parsing functions in saol_parser.c, then add rate-checking and syntax-checking in saol_rates.c
and saol_syntax.c, then add interpretation for that statement or expression in saol_interp.c. (This
is only for modifying the syntax itself – you don’t have to go to all this work to add new core opcodes. See
Section 5.13).

5.11. saol.yy.c / saol.lex
saol.yy.c is automatically generated from saol.lex by the lex tool. Like saol.tab.c, you shouldn’t
have to edit this file by hand or try to read it.

The lex code in saol.lex is pretty much the same as the example lex code given in Annex 5.C of the
standard. Each line in the lex code shows how to recognize one of the basic lexical elements of SAOL. So
a line like

"ivar" { count(); return(IVAR) ; }

says that when the scanner sees the text string “ivar” it should call the function count() (which just
keeps track of lines and characters we’ve scanned) and then return the IVAR value. The enumeration of
these values is in saol.tab.h, which is automatically generated when saol.yacc is converted with
yacc.

Some of the lines use regular expressions, for example
{IDENT} { count(); yylval = add_ptr_index(strdup(yytext));

 return(IDENT) ; }

where the IDENT macro is defined at the beginning of the file as
IDENT [a-zA-Z_][a-zA-Z0-9_]*

saolc external documentation 1 June 1999 16/40

Thus, an IDENT is a letter or underscore, followed by a sequence of 0 or more letters, digits, and
underscores. When an IDENT is found, we save a copy of the matched sequence (called yytext), return
the IDENT token, and set the “scanner data” yylval to the pointer-index number of the new identifier. All
of these funny variables have special meanings in the yacc code; to better understand the relationship
between lex and yacc, see a compilers textbook such as the one cited in Section 9.3.

The whole lexer specified by saol.lex creates a single function, yylex(). yylex() is called by
yyparse() to get lexels from the orchestra.

When saol.yy.c is compiled, it is #included in saol.tab.c rather than linked in with the rest of the
code. To make a new Makefile or project for saolc, don’t try to compile saol.yy.c directly into an
object file; rather, mark it as a dependency of saol.tab.c.

5.12. saol_co_imp.c
This module contains all of the implementations of core opcodes in SAOL. The SAOL core opcodes are
listed in Clause 5.9. For each core opcode xxx(), there is a corresponding C-code module co_xxx(). The
core opcodes are called by saol_interp.c through the table of pointers co_ptr() that’s defined in
saol_core_opcodes.c.

Each core opcode implementation has the same prototype, as follows:
co_xxx(sa_decoder *sa, opval *op, actparam *pf, int pf_ct, long rate)

sa points to the current decoding process; op contains all the current values of state variables in the
opcode; pf contains all of the actual-parameter values; pf_ct specifies how many actual parameters there
are; and rate specifies what rate we’re currently working on (i-rate, k-rate, or a-rate). Most of the core
opcodes do different things on the i-rate, k-rate, and a-rate passes as specified in Clause 5.9.

Each opcode has state that keeps track of the values of all of its variables (for example, the current values
of the filter feedback for the iir() opcode). Since each opcode is potentially used many times in parallel, we
can’t use static storage within the opcode implementation to hold this state. Instead, the instruments keep
track of the states of each of the opcodes they use. The op->local structure for each instance of each
opcode is a (void *) that gets casted to the storage structure of the opcode. All of the storage structures
are defined in saol_co_imp.h.

Some of the opcodes need to dynamically allocate more memory. For example, for delay() we have to
create delay-line memory, and we don’t know how much until runtime. The op->dyn field is used to hold
a pointer to this memory. For a very few (for example, pluck()), we need more than one dynamic segment.
There’s only one handle, so op->dyn points to a big block corresponding to everything we need, then we
break it up locally and manage it ourselves.

5.13. saol_core_opcodes.c
saol_core_opcodes.c contains the main core-opcode table. This table is used by the syntax-checker to
make sure that the parameters to core opcodes are at the right rate, by the scheduler to figure out how much
memory needs to be allocated for each opcode instance in each instrument, and which function from
saol_co_imp.c to call to execute each core opcode.

In order to add another non-normative core opcode to the implementation, all you have to do is give it an
entry in the opcode table, a storage structure in saol_co_imp.h, and an implementation in
saol_co_imp.c. Everything else is handled automatically.

5.14. saol_interp.c
This module, with saol_sched.c, forms the run-time core of saolc. saol_interp.c contains all of the
functions for interpreting SAOL code, handling variables, doing math, and so forth. It communicates with
the scheduler, which keeps track of what instrument instances are running, and with the core opcode
implementations in saol_co_imp.c, which execute the algorithms corresponding to core opcodes.

saolc external documentation 1 June 1999 17/40

The top-level functions are run_itime() and run_katime(), at the bottom. These are the functions that
are called by the scheduler to run an instrument instance for its i-rate, k-rate, or a-rate execution.
run_itime() updates (“pushes”) the context of the instrument instance by looking up the values of all the
global variables and controllers the instrument needs, creates any local wavetables in the instrument, calls
eval_block() to execute the instrument, and then copies out the values of exported variables (“pops the
context”).

run_katime() is used to run an instance at either the k-rate or the a-rate. For the k-rate execution, it
pushes the context, updates the local time of the instrument (the itime standard name), calls
eval_block(), and pops the context. For the a-rate execution, it calls eval_block() multiple times,
once for each a-cycle in the k-cycle, and updates the output sample pointer for each. That is, the value of
the expression in an output statement on the first iteration is the first sample of output in the k-cycle, the
value on the second iteration is the second sample of output, and so on.

eval_block() is the central function of the interpreter. It evaluates a block of code (a sequence of
statements) at a particular rate according to the rules in Subclause 5.8.6.6. This is just a big switch
statement depending on the type of the statement. For if, else, and while statements— which themselves
contain blocks of code— eval_block() is called recursively. eval_block() makes heavy use of
eval_expr(), which recursively descends the expression tree for an expression and evaluate it. At the
bottom of the expression tree, we sometimes reach a variable name (tagged IDENT in the code), at which
point the function get_var_value() is used to get the value of variable given the instrument context.

When we find a core opcode in the code (more properly, an opcode expression or oparray expression
referencing a core opcode), we call eval_opcode() or eval_oparray() as needed. Each of these
functions evaluates the parameter expressions, looks up the proper core opcode storage structure in the
context, and then calls the proper function in saol_co_imp.c. There are no user-defined functions left in
the code during interpretation— they were removed during macro expansion (Section 5.15).

There are a number of auxiliary functions in this module that are relatively straightforward.

5.15. saol_macro.c
saol_macro.c is the central module of the preprocessor. It is also poorly written, kludgy, and probably
impossible to understand. It should really be rewritten.

Since SAOL opcodes may not be recursive or mutually-recursive (Subclause 5.8.6.7.6) it is always possible
to convert instruments that call one or more user-defined opcodes into instruments that do not, by macro-
expanding the user-define opcode code into the instrument. The advantage of this is runtime efficiency,
since a-rate context switches may add 30% or more overhead to the execution (in fact, saolc runs twice as
fast as the version that used context-switching did). The disadvantage is ease of debugging and
straightforwardness of the implementation. saol_macro.c is the only major part of saolc that is
optimized a little for speed instead of for maximum clarity.

The process of expanding user-defined opcodes (UDOs) as macros is much more complex than the C
preprocessor macro functionality. This is because UDOs:

(a) may contain statically-scoped variables of their own, which have to be renamed during macro
expansion,

(b) may reference core-opcode oparrays, global variables and standard names, which act as
exceptions to (a)

(c) may return arrays rather than scalar values,

(d) may be used in the SAOL opcode-array construction (Subclause 5.8.6.7.7),

(e) contain a block of statements rather than an expression, and

(f) may contain the return statement, which short-circuits the evaluation of the code block.

We have to deal with all of these cases carefully to avoid changing the semantics of the code. This
example shows what has to happen. We are given an instrument that makes a call to the UDO foo():

saolc external documentation 1 June 1999 18/40

 instr inst1(p1) {
 asig x;

 x = foo(p1 * 3);
 output(x);
}

 The UDO has some code:
 aopcode foo(asig x) {

 asig y;

 y = x * 4;
 return(y * y * 12);

 }

 We want to paste the UDO code into the instrument, so that when it’s done, it looks like
 instr inst1(p1) {

 asig x;
 asig __foo_x, __foo_y;

 __foo_x = p1 * 3;
 __foo_y = __foo_x * 4;
 __foo_rtn = __foo_y * __foo_y * 12;
 x = __foo_rtn;

 output(x);
 }

This simple example doesn’t show any of the interesting problems except (a) and (e).

The top-level function of saol_macro.c is macro_expand(). It is called by main() after the syntax-
and rate-checking of the orchestra code is complete. macro_expand() converts the orchestra, which
contains user-defined opcodes as well as instruments, into a new orchestra that contains only instruments
and has no UDOs. macro_expand() traverses the list of instruments and calls macro_expand_block()
for each.

macro_expand_block() pastes all the code for the necessary UDOs into a block of orchestra code. For
each occurrence of a UDO in a block of code, we do the following:

(a) make a new variable that corresponds to the return statement in the UDO, to hold the dummy
return value

(b) figure out the new names of all the local variables in the UDO

(c) turn the UDO parameters into assignment statements if they’re call-by-value parameters

(d) add all of the variables from the UDO to the symbol table of the caller

(e) make a deep copy of the code block that contains the UDO code (we need to save the UDO code
in the pristine form since we might have to use it again somewhere else)

(f) in the new code block:

1. replace all the local variables and formal parameters with their new names

2. expand all of the UDOs that are called by this UDO (via a recursive call to
macro_expand_block())

3. add an assignment statement assigning the expression from each return statement to the
dummy return variable

(g) add a jump flag after each return statement to show that it has to jump out of the code block

(h) paste the munged code block in the place of the call to the UDO

(i) in the special case where a UDO is embedded in the while loop guard, make another deep copy of
the munged code block, and add it in at the end of the while code block

saolc external documentation 1 June 1999 19/40

It is a doubly-recursive procedure. That is, it contains two separate recursive calls, with different purposes,
back to itself. The first is the more complex case: at the time we expand a UDO into the instrument code,
we have to macro-expand the block of code from the UDO (mentioned as step e.1. above). The second is
the simple case: we traverse the list of statements within the code block and expand the UDOs in each
statement. Sometimes, while doing this, we encounter an if, else, or while statement. These statements
contain (“guard”) subsidiary code blocks that must be recursively traversed.

In order to manage the recursion, there are several data structures that keep track of things. The
name_map array holds all of the renamings as we recurse downward – it shows the old name and the new
name. Sometimes the new name is an array-reference (if the UDO was called in an oparray expression)
even if the old name wasn’t. This means that conceptually sometimes we have to deal with
multidimensional arrays; they don’t exist in SAOL, so we fake them by munging the index expression with
the fake_md_array() function.

As we recurse downward, we build up new names for variables by adding function names and counters to
the front. The add_name_map() function figures out the new names, adds them to the name map, and also
adds the new names to the symbol table of the instrument.

5.16. saol_main.cpp
This is the top-level module of saolc. It contains the main() function and a few other high-level functions.
The overall function of main() is very simple: read in the bitstream and/or standalone files, configure the
decoder (by calling saol_startup()), and then run the decoder until it finishes.

saol_startup() does most of the decoder startup. It does the following things:

- open all the input files

- initialize speed control buffers

- initialize all the MIDI controllers

- if we’re doing bitstream processing

- make temporary names for the bitstream orchestra and score files

- parse the bitstream header and dump the files to disk (call process_header() in
saol_decode.cpp).

- load a SASBF bank if there is one

- open and parse the orchestra code

- build the symbol tables and syntax and rate-check the orchestra

- macro-expand the user-defined opcodes away (see saol_macro.c)

- make the global context (in saol_sched.c)

- start the scheduler (in saol_sched.c)

- parse the score and MIDI files

The help() function dumps out command-line help.

5.17. saol_midi.c
Functions in this module parse MIDI events from MIDI files. This module does not contain the functions
that deal with incoming streaming MIDI events (that’s in saol_decode.cpp) or that dispatch MIDI
events during run-time (that’s part of the main scheduler loop in saol_sched.c). This module interprets
a Standard MIDIFile as a sequence of MIDI events, either for decoder configuration in saolc or for
encoding into streaming format in saenc (see Section 8).

For decoding, the top-level function is parse_midi(). This function reads through all the events in a
MIDI File and creates scheduler events for them. For encoding, the top-level function is

saolc external documentation 1 June 1999 20/40

get_next_event(). This function returns one event at a time to the caller, which is doStreamMIDI()
in sa_encode.cpp. (In the encoder, the macro _SAENC should be #defined; this macro removes some
of the other functions from compilation. These other functions depend on decoder header files, and so it
simplifies the encoder executable to not use them.)

The overall function of this module is straightforward; it reads values out of the MIDIfile, byteswaps them
if necessary according to the architecture, and then converts the events into MIDI values. Reference to the
MIDI specification (see Section 9.3) is useful for understanding some of the trickier bits in the MIDI
format, such as the variable-length-quantity.

5.18. saol_parser.c
This module contains a whole bunch of short functions that are called by the parser to construct the parse
tree. These functions are all of the nature of “build a new expression node” or “add a parameter to a linked
list,” so they won’t be documented in any great depth. Once you understand the data structures for the
parse tree (see Section 5.30), you should pretty much understand what these functions do. The yacc-
generated code (Section 5.10) makes heavy use of these functions, calling them to recursively build up the
parse tree.

Two notes on coding style: if I were to rewrite saolc from scratch (it probably needs it!) I would use C++
for the parse tree and make heavy use of the Standard Template Library. The STL wasn’t generally
available yet when saolc was begun in Mar 1997. Further, if you think of the different elements of the
parse tree (parameter lists, expressions, etc) as classes, there’s not a full encapsulation that provides
functions for reading and writing the elements of each class. In most cases, the caller simply accesses the
elements itself; to some ways of thinking, this is poor coding style since direct element access should be a
private operation.

5.19. saol_rates.c
This module contains functions that rate-check the orchestra. Rate-checking is done after syntax-checking,
to insure that the rate-semantics rules given in the specification are followed. An example of the sort of
problem we’re looking for is:

ivar i;
ksig k;

 i = k * 2; // illegal

This is illegal per Subclause 5.8.6.7.12 (“the rate of the binary expression is the faster of the rate of the two
subexpressions”, making the right-hand side k-rate and 5.8.6.6.2 (“the statement is illegal if the rate of the
right-hand sie is faster than the rate of the lvalue.”).

We want to search through the code and calculate the rate of each statement and expression, and make sure
the rules are being followed. We store the rates in fields of the parse tree since they’ll be needed during
run-time interpretation.

There are three main mutually-recursive functions that do this: block_rate(), statement_rate(), and
expr_rate(). The only hard case is when opcode user-defined opcodes are used, in which case the rate
of the opcode depends on the context in which it is called. This part of the checking could be simplified if
it was better-integrated with the macro-expansion routines.

5.20. saol_sched.c
This module, along with saol_interp.c, makes up the central run-time component of saolc. It is the
main control mechanism of the running Structured Audio orchestra; the actions that it implements generally
match those in Subclause 5.7.3.3 of the specification.

The top-level function in saol_sched.c is sched_run_kycle(). This function is called repeatedly
(once per k-cycle) by main() until the synthesis process is complete. Each time sched_run_kcycle()
is executed, it runs the orchestra for one k-cycle as specified in Subclause 5.7.3.3.6. This consists mainly
of calling receive_au() in sa_decode.cpp to add any new events to the main list of “pending” events,

saolc external documentation 1 June 1999 21/40

dispatching any events scheduled to occur at the current time, and then calling the functions in
saol_interp.c to execute each active instrument instance for one k-cycle and one set of a-cycles. At the
end of the k-cycle, any instrument instances marked for termination are destroyed.

There is a few other important external functions in saol_sched.c. start_scheduler() performs the
tasks required at decoder startup as described in Subclauses 5.7.3.3.5.3 and 5.7.3.3.5.4. This includes
opening output files, creating and initializing an instance of the startup() instrument, initializing global
variables, making global wavetables, and creating and initializing one instance of each instrument
referenced in a send statement in the orchestra. schedule_event() adds a new event to the list of
pending events. This is done repeatedly at startup for the scores and MIDI files in the decoder
configuration header, and once for each new event as it comes in during the streaming execution of the
decoder.

The rest of the functions are utility functions that encapsulate scheduler behavior. output_sound()
figures out what the final orchestra output is and outputs it to the DAC or to a sound file as requested at the
command line. register_inst() is everything the scheduler does in response to the creation of a new
instrument instance. It creates a handle (Section 5.30.14) for the instance, makes space for the controllers
(host variables), puts the handle in the active instance list, and makes a “turnoff” event if the duration of the
instance is known. instr_turnoff() and instr_extend() handle the execution of the SAOL extend
and turnoff statements.

start_send_instrs(), called at decoder startup, goes through all of the send statements, makes a new
instrument instance for each, and executes the new instance at i-rate. make_global_context() allocates
space for global variable and figures out the sampling rate and control rate of the orchestra if they weren’t
explicit in the SAOL code. add_global_table() makes a table in the global context by allocating
space, evaluating the parameters and calling the appropriate table generator. destroy_inst() destroys
an instrument instance by deallocating the memory and removing the instrument handle from the list of
active instruments.

scale_sched_events() is called on tempo changes received from the score, from a MIDIfile, or by
changes to the speed field in an AudioSource BIFS node binding the decoder.

There are several functions used for processing command-line audio input files when the decoder is
running in standalone mode. The top-level function for these is do_input(). These functions are not
needed for normative operation. For normative operation, only the first few lines of do_input() are used;
they move the input data out of the decoder input buffer (provided by the AudioFX node code, see Section
6) into the special bus input_bus.

Stubs are provided for implementing real-time audio output (although actually hooking the stubs up hasn’t
been tested in more than a year.) To provide live output, they should be written to communicate with the
system DAC. soundOutOpen() should open the DAC; soundOutClose() should close it, and
soundOutQueue() should write a block of samples to it.

5.21. saol_score.c
This module contains functions that parse a SASL score file. This code is used only at decoder startup,
when a textual SASL file (conceptually, from the bitstream header) is being read. For each line of the
SASL file, one scheduler event is created and scheduled for execution at the proper time.

parse_score() is the top-level function and is called by main(). This module is very simple; it’s
essentially all text-processing.

5.22. saol_sequence.c
saol_sequence.c is the module that figures out a legal order of execution of the instruments in the
orchestra, according to Subclause 5.8.5.6 of the specification. The inputs to this module are the sequence,
route and send statements from the global block. At output, the sa->seq[] array has been filled such that
the sa->seq[i] entry contains the ordinal position of instrument number i. (Instruments are numbered
according to their order in the orchestra).

saolc external documentation 1 June 1999 22/40

make_sequence() is the topmost call; it is called from build_sym_table() in saol_syntax.c. It
uses an assertion model to determine an ordering given the constraints provided by sequence, route, and
send statements. This means an alternation of asserting precedence rules and calculating of the transitive
closure of these precedences. First, we assert each precedence given in a sequence statement. Then we
calculate the transitive closure of those precedences. If there is a loop at this point, it is a syntax error per
5.8.5.6.

After this, we assert each precedence given by a route/send pair if it is not in conflict with the current
transition matrix, and recalculate the transitive closure after each. Once this is finished, we have a
complete precedence matrix, and put_sequence() calculates a legal sequence. This is very simple: at the
start, there is at least one instrument with no predecessor. Take one such instrument as the first, and
remove it from the set of candidates. Now, among the candidates, there is at least one instrument that has
no predecessor. It is the second instrument in sequence, and is removed from the set. This process
continues until all of the instruments have been placed in sequence.

If the –verbose command-line flag is set, the sequence of instruments is dumped out after it is calculated.

5.23. saol_sbsynth.c
saol_sfsynth.c sets things up to pass off to the SASBF synthesizer (see below). It is the point of
contact between the SAOL interpreter and synthesizer, and the SASBF synthesizer. The sfsynth()
function (it has this name for historical reasons) is called every time an sbsynth statement is executed in
eval_block() in saol_interp.c.

5.24. saol_spatial.c
saol_spatial.c is not yet implemented. It should contain 3-D audio spatialization code. Right now, it
has only a stub.

5.25. saol_syntax.c
This is an important module in the decoder configuration. It syntax-checks all of the orchestra code, to
make sure that variables are declared and user-defined opcodes actually exist. It also figures out the width
of each expression, instrument, opcode, and bus in the orchestra, and builds the global, instrument, and
user-defined opcode (UDO) symbol tables.

 build_sym_table() is the top-level function; it is called by main(). It performs the following
functions:

- Figure out the number of input and output channels to the orchestra.

- Build the global symbol table and add the global variables, UDOs, and instrument names to it.

- Look for undeclared variables in the global block.

- Figure out the overall sequence of instruments (saol_sequence.c).

- Make a symbol table for each instrument and add the pfields and local variables to it.

- Make a symbol table for each UDO and add the formal parameters and local variables to it.

- Check each instrument’s code for undeclared variables and opcodes.

- Figure out the width of each instrument and bus.

- Check each opcode’s code for undeclared variables and opcodes.

- Remove unused variables from the global symbol table and from each instrument.

As we’re checking the code of each instrument, we mark each variable name as we see it used. Then, as
the last step, we remove unused variables from the symbol table for efficiency.

Most of the functions in saol_syntax.c are pretty obvious in their operation. Notable is
add_sym_table_decls(), which goes through a list of variable declarations (created by the parser) and

saolc external documentation 1 June 1999 23/40

adds all the variable names in each declaration to the symbol table. This function (which uses
add_sym_table_namelist() to process each line) also checks for mismatches between local variables
and global variables (an imports variable has to be the same type as its global counterpart if there is one).

5.26. saol_tables.c
This module contains the implementations of all of the core wavetable generators from Clause 5.10 of the
specification. The mapping from name to function is contained in the core_tablegens array; if you want to
add nonnormative wavetable generators, you just add the name and function pointer there and update the
value of NUM_CORE_TABLEGEN. Each table generator is passed a pointer to a table_storage
structure (Section 5.30.26) and a list of the parameters that the tablegen was called with. It fills up the table
structure with data.

The table generators are called during global orchestra startup in saol_sched.c and during i-rate
execution of an new instrument instance in saol_interp.c. The gen_table() function looks up the
right one by its name and then calls it.

There are a few other utility functions dealing with tables here as well, to check the size of a table, check
that a name is really the name of a core table generator, and to allocate space for a new table.

5.27. saol_templates.c
This module exposes the function deal_with_template(), which is called from the parser code (Section
5.10) when a template is found. When this happens, the template is immediately replaced by the set of
instruments that it defines. The process is quite simple; we make a bunch of instrument data structures and
fill them up with deep copies of the data in the template, where we replace the template expressions with
their corresponding values from the name map. All this requires is recursive descent through the parse tree
with deep copying at the appropriate places.

The deep-copy functions for various SAOL elements are in saol_parser.c.

5.28. saol_tok_table.cpp
saol_tok_table.cpp contains two important tables: one that matches up SAOL parsing tokens (those
generated by the lexer (Section 5.11)) with the corresponding bitstream tokens, and one that matches up
bitstream tokens with the corresponding character strings. The first table is used by the encoder saenc
(Section 8) to generate bitstream tokens from lexical analysis of a SAOL program. The function
lexel_map() is used for this— it returns the bitstream token corresponding to a particular lexical element.
The second table is used by the encoder to turn strings in the input (particularly the names of core opcodes)
into bitstream tokens, performed in is_builtin(), and by the decoder to turn bitstream tokens back into
textual SAOL during detokenization, performed in tok_str().

Neither of these tables is strictly necessary in a SA decoder— it would be more efficient to parse the SAOL
code directly from the bitstream sequence rather than go through a detokenization step. They are used here
since saolc already supports text-mode decoding, and so it is simpler to have only one parser rather than
two.

5.29. sf_*.cpp
These files implement aspects of the SASBF synthesizer. They are not currently included in the public-
domain release (although the possibility is being investigated). They will be documented better in the
future.

saolc external documentation 1 June 1999 24/40

5.30. Important data structures

5.30.1. Introduction
saolc, like any high-level language interpreter or compiler, depends on the interaction of a lot of
complicated data structures. Most of the data structures in saolc are either linked lists or trees. This makes
the code simple and straightforward, but less efficient than using structures like hash tables or threaded
trees. This section provides an overview of the data structures in saolc. Only the most cursory view is
presented; the comments in the header files provide a more detailed commentary.

Unless otherwise specified, a structure named element_list is a simple linked list of elements of type
element. The list structures are not highlighted specifically below. There are a few linked list types that
directly encapsulate the element data (that is, instead of pointing to an element structure, the fields of the
element structure are incorporated in element_list). It is ugly that the two methods are used together; this
inconsistancy should be repaired.

The list of data structures is in ASCII alphabetical order by the typedef name. Each is also tagged with the
header file that defines it.

5.30.2. actparam (saol_interp.h)
An actparam structure is an actual parameter, used to pass data from the running code of a note to a core
opcode. It contains one of the possible things that can be passed to a core opcode— either a floating point
value or a pointer to a wavetable (Section 5.30.26).

5.30.3. block (saol.h)
A block structure holds a block of SAOL source code. It is just a linked list of statements (Section
5.30.23).

5.30.4. bustable (saol.h)
The bustable structure holds the list of all the busses that are declared in the orchestra. It is a linked-list
with the data directly encapsulated in the linking structure. Each node contains information about one bus,
associating the name of the bus, its width, the current contents (audio signal) on the bus, and the send
statement that defined the bus.

5.30.5. cmdinfo (saol.h)
The cmdinfo structure holds all of the flags given on the command line (Section 2.2), such as the orchestra
filename, bitstream filename, and output filename; the interpolation quality; and whether or not the decoder
is running in “verbose” mode.

5.30.6. context (saol_interp.h)
The context structure contains all of the state for a note that is running in the orchestra. This includes the
following fields:

- framevals, which is an array of frameval (Section 5.30.10) that contains the current values of
all the local variables.

- sfstorage, which is the current state of all the SASBF synthesizers under the control of this
note.

- localvars, which is the symbol table of the instrument that corresponds to this note (Section
5.30.24)

- outval, which are the output values of the note at the current time step

- instr, a pointer back to the handle for this note (Section 5.30.14)

saolc external documentation 1 June 1999 25/40

- cop_storage, the states of all the core opcodes under the control of this note (Section 5.30.18)

- asample_ptr, the number of the a-cycle within the current k-cycle that is being worked on

- globalout, a flag indicating whether the output of this note is the global orchestra output.

5.30.7. event (saol_sched.h)
An event holds one event from a score or a MIDI file that has not yet been dispatched (executed by the
orchestra). It contains the name of the instrument, controller, or wavetable, the score label of the of event,
the name of a sample referenced by a wavetable score line, the time at which the event will be dispatched,
the duration of the event for SASL instrument events, the parameters of the event, the handle of an
executing note (Section 5.30.14) for a SASL note-off event (that is, a note-off event created from a SASL
instrument event with a duration), and the type of the event.

5.30.8. expr (saol.h)
The expr structure holds an expression of the SAOL. code. It contains the type of the expression (a
terminal, an arithmetic expression, an opcode call, and so forth), the subexpressions of the expression (thus
making it one node of a tree), the rate of the expression, the actual parameters (a list of expressions) for
anopcode call, a terminal structure (Section 5.30.28), a pointer to the core opcode called by the expression,
a pointer, the width of the epxression, and a number of extra fields used for keeping track of the macro
expansion process (Section 5.15).

Not all of the fields of this structure are used for every type of expression. For example, for an arithmetic
expression, the list of actual parameters is not used and is left as NULL.

5.30.9. formalparam (saol.h)
A formalparam is one formal parameter to a user-defined opcode. It contains the name (Section 5.30.16)
of the formal parameter and the rate of the variable associated with it.

5.30.10. frameval (saol_interp.h)
A frameval is the current value of one variable in a note that’s running. It is either a floating-point value
or a pointer to a wavetable (Section 5.30.26).

5.30.11. global_block and global_decl (saol.h)
A global_decl corresponds to one line of global declaration in the orchestra. It is a parsing data structure,
which means that it is directly filled up by the yacc-generated parser code (Section 5.10). After the
orchestra is parsed, we figure out what the data in each global_decl means and move it into the overall
orc_global structure (Section 5.30.20).

A global_block is a linked list of global_decl structures. It holds the whole global block as it is parsed.

5.30.12. hostvar_list (saol_sched.h)
A hostvar_list contains all of the information about the controllers and global variables attached to one
instrument handle (Section 5.30.14). It is a linked list type with the data directly encapsulated in the
linking structure. Each node of the list contains the data for one controller or global variable (the name
“host variable” in saolc is due to historical reasons), and associates together the name of the controller, the
symbol in the instrument symbol table for the controller (Section 5.30.24), the current value(s) of the
controller, the width of the controller, and a flag indicating whether the controller value has changed since
the last k-cycle of the instrument.

saolc external documentation 1 June 1999 26/40

5.30.13. instr_decl (saol.h)
The instr_decl structure holds everything associated with the code of one instrument. This includes the
name of the instrument, the list of instrument p-fields, the list of local variable declarations (Section
5.30.29), the code itself (Section 5.30.3), the local symbol table (Section 5.30.24), the list of busses the
instrument routes to (Section 5.30.15), the list of preset numbers for the instrument, and the number of
input and output channels of the instrument.

5.30.14. instr_handle (saol_sched.h)
The instr_handle structure contains all of the information describing one note in the pool of active notes.
It associates together the following fields:

- label, which contains the score-line label of the note, if any

- cx, which contains the context of the note (Section 5.30.6)

- id, a link back to the instrument declaration and code that corresponds to the note (Section
5.30.13)

- input and output, the input and output sounds of the note

- itime, the amount of time the note has been executing

- hvl, the list of all the controllers used by the instrument (Section 5.30.12)

- flags indicating whether the note is being turned off, whether it is waiting for the sustain pedal
to be released, and whether it is making sound

- parameters specifying the number of input channels, why the note was created (in response to
to a SASL event, MIDI event, send statement, instr statement, or because it is the startup
instrument), and the MIDI channel and MIDI pitch of the note

5.30.15. instr_route_list (saol.h)
The instr_route_list structure keps track of all the places the output of one instrument is routed. It is a
linked list type, with the data directly incorporated into the linking structure. For each instrument, a
separate list is maintained. Each node of the list corresponds to one route statement that that instrument is
involved in. Each node associates together the list of all the instruments in that route statement, the bus
that that route statement points to, and the starting channel of this instrument within the route (that is, the
first channel of the bus that receives data from this instrument). A flag called allchan is set iff the
instrument output goes onto all of the channels of the bus.

5.30.16. name (saol.h)
A name associates the name of a variable (as a character string) with an array width. It is used in places
where a name is declared, such as a variable declaration (Section 5.30.29) or formal parameter list (Section
5.30.9).

5.30.17. opcode_decl (saol.h)
The opcode_decl structure holds everything associated with the code of one user-defined opcode. This
includes the name of the instrument, the list of formal parameters (Section 5.30.9), the list of local variables
(5.30.29), the code (Section 5.30.3), the local symbol table (Section 5.30.24) , and the rate and width
(number of return channels) of the opcode.

User-defined opcodes only exist as separate structures until macro pre-processing of the orchestra (see
Sections 3.2.1 and 5.15). After that, they are fully embedded in the instrument code. This data structure is
not used during run-time decoding.

saolc external documentation 1 June 1999 27/40

5.30.18. opval (saol_interp.h)
The opval structure contains the current state of one core opcode. This includes any local storage allocated
by the opcode, and any dynamic storage allocated by the opcode (see Section 5.12).

5.30.19. orc (saol.h)
The orc structure associates the three main data structures describing the orchestra source code: g, the
“global orchestra” structure (Section 5.30.20), il, the list of all the instruments (Section 5.30.13), and op,
the list of all the opcodes (Section 5.30.17). This is the top of the SAOL parse tree.

5.30.20. orc_global (saol.h)
The orc_global structure keeps track of everything that pertains to the global block in the code. This
includes the sample and control rates, the list of global variable declarations (Section 5.30.29), the list of
route statements, the list of send statements, the symbol table of global variables (Section 5.30.24), and the
list of all the busses in the orchestra (Section 5.30.4).

5.30.21. sa_decoder (saol.h)
The sa_decoder structure is the main structure containing the current state of the decoder. Everything that
is needed to run the decoder is included or linked into this structure. Since it encapsulates all decoder state,
multiple SA decoders may be run in the same address space without multi-threading; this feature is used in
the Audio/Systems software (Section 6).

Unfortunately, sa_decoder is a “flatter” structure than it really ought to be— too many fields are thrown
into it at the top level, which makes it very difficult to keep track of everything it stores. Some of the
important fields of sa_decoder are:

- global_cx, which holds the current global context (see Section 5.30.6)

- all, which holds the parse tree and auxiliary data pertaining to the orchestra code (see Section
5.30.19).

- sched, which holds the current state of the scheduler (see Section 5.30.22)

- outbuf and aifout, which are used to buffer the output and keep track of the writing-to-the-
output-file process

- ended, which is 0 as long as the decoder is still running

- midicc, which contains the values of all the MIDI controllers on all of the channels.

- channels, which contains the instrument currently active on each MIDI channel

- seq, which contains the sequence in which instruments are executed

- cmd, which contains the command-line controls specified for saolc (see Sections 2.2 and
5.30.5)

- cached_au, which contains the next AU from the bitstream to be decoded

- in_bitstream, which contains the status of the bitstream reading (see Section 5.9)

5.30.22. scheduler (saol_sched.h)
The scheduler structure associates all of the run-time data together. This includes the current orchestra
time, the list of all the active note event handles (Section 5.30.14), the list of all the pending events (Section
5.30.7) that is kept sorted in order of dispatch time, a tail pointer to the list of pending events, the current
tempo of the synthesizer, and a flag indicating whether the orchestra is running or not.

saolc external documentation 1 June 1999 28/40

5.30.23. statement (saol.h)
A statement is one statement of SAOL source code. It associates together all of the possible parts of a line
of code. This includes the kind of statement (assignment, while, and so forth), the rate type of the
statement, subblocks for if, while, and else clauses, the lvalue expression for assignments, a main
expression (Section 5.30.8), the name of an instrument called by the instr statement, and the name of a bus
referenced by the outbus statement. There is a special field called jump that is used to indicate the next
statement to execute in cases where this is not the next statement in the linked list. This field is only set by
the macro-expansion code, where it is used to indicate the next statement to execute after a return
statement.

Not all of the fields in this structure are filled for each kind of statement. For example, for a while
statement, the lvalue, else-block, instrument-name, and bus-name fields are left empty. Some of the fields
have slightly different meanings depending on the kind of statement. For example, for a while statement,
the expr field holds the guard expression, while for an assignment statement, the expr field holds the right-
hand-side expression.

5.30.24. symbol and symtable (saol.h)
The symbol structure contains one entry in a symbol table. A symbol table holds the list of all the variables
in a context (5.30.6); it is just a list of symbols. Each symbol contains the name, rate type, and width of the
variable; a link to the table definition (Section 5.30.25) if the variable is a wavetable; flags indicating if the
variable is imported, exported, or both; a link to the global variable if the variable is imported or exported
and there is a global variable of the same name; a pointer back to the line of code that declared the variable
(Section 5.30.29); a list of names if the variable is a tablemap; and the offset of the variable within the
frame. This last value gives the offset of the particular framevalue for this symbol within the framevals
array of a context using this symbol table (Sections 5.30.10 and 5.30.6). There is also a special field mark
that is used to mark variables that are actually used in the code; if a variable is not used, it is removed
before run-time for efficiency.

5.30.25. tabledef (saol.h)
The tabledef structure contains the data from one table definition. This includes the name of the table, the
table generator to be used, and a list of expressions (Section 5.30.8) that serve as the parameters to the
table.

5.30.26. table_storage (saol_interp.h)
The table_storage structure contains a wavetable. This includes the name, size, sampling rate, looping
points, and base frequency of the wavetable, and all of the current values of the wavetable data.

5.30.27. template_decl (saol.h)
The template_decl structure is used only during orchestra parsing, to hold all of the information associated
with a template in the SAOL orchestra code. As soon as it is parsed, it is converted (see Section 5.27) into
a list of instruments stored as instr_decl structures (Section 5.30.13).

5.30.28. terminal (saol.h)
The terminal structure holds a terminal in the code. A terminal is a code element with no further structure.
This includes a constant value, a string constant, or a variable name. In the case of a variable name, the
iname field holds the character-string name, and the sym field is used to point to the entry in the
appropriate symbol table for the variable (Section 5.30.24).

5.30.29. vardecl (saol.h)
The vardecl structure contains all of the data that might be associated with a declaration of one local or
global variable. This includes the rate type of the variable, the list of names (Section 5.30.16) in the

saolc external documentation 1 June 1999 29/40

declaration, a pointer to a table declaration (Section 5.30.25), the name of a tablemap, and flags indicating
whether or not the variable is imported or exported or both.

Not all of the fields of this structure are filled for every variable declaration – for example, for a regular
ksig declaration, the table pointer is left NULL.

saolc external documentation 1 June 1999 30/40

6. saolc and the rest of ISO 14496-5
This section will discuss the relation with the AudioBIFS reference software.

saolc external documentation 1 June 1999 31/40

7. Bugs and other known issues

7.1. Introduction
This section describes known bugs and other issues in saolc. The issues fall into five main categories:
things that are supposed to work, but don’t (“bugs”); things that are required to be in a compliant
implementation, but aren’t implemented yet; places where saolc fails to conform to an instruction in the
specification (“violations”); things that saolc does that it doesn’t need to (“extensions”); and bugs in the
specification that are fixed in saolc and will be fixed with corrigenda to the standard at a future time.

A short section on portability is also included.

To report additional bugs, or to provide patches that fix bugs or implement non-implemented features,
please send e-mail to saol-bugs@media.mit.edu. The Media Laboratory is no longer actively developing
this codebase; therefore, we can’t necessarily provide bugfixes immediately on request. However, we are
happy to act as a clearinghouse for bugfixes contributed by the community.

7.2. Bugs
There are a few known bugs in saolc v. 1.0. This list will likely grow as the software is exercised more
completely.

1. The template parser does not handle expressions in the mapblock properly – this is also an error in
Annex C.3 of the specification. A template like

template <i1, i2> (p1, p2) map { a, b } with { < i + 4, p1>, <i + 2, p2> } { ... }
can’t be parsed— the expressions will crash. (It was an unfortunate design choice to use the angle
bracket as the delimeter for the mapblock because it means the grammar is not LR(1)).

2. The PICOLA speed-change tools are broken.

3. When a user-defined opcode contains statements that are at a slower rate than the opcode, they are
improperly executed by saolc (they should be ignored).

7.3. Features not yet implemented
Some features of the MPEG-4 standard have not been implemented in saolc v. 1.0.1. The following
aspects of the standard have not yet been implemented:

- The spatialize statement

- The reverb, chorus, and speed_t core opcodes

- The MP4 file format (see Section 8).

- The implemenations of the SASBF parts--the SASBF wavetable-synthesis format and the
sasbf statement in SAOL--are not finished

7.4. Features implemented in a non-compliant manner
Features implemented in a non-compliant manner are indicated in comments in the code containing the
word VIOLATION. The following violations are currently known:

- Global wavetables are linked into instrument instances through pointer copies. This means
that changes to imported tables are globally reflected even if the table is not exported. For
proper operation, a deep copy of the table should be made at each k-rate instance, or else
some list of modifications should be maintained and rolled into the table for exported tables
(saol_interp.c).

- There is simple packaging for Access Units that contains their Decoding Time Stamps. The
full MPEG-4 File Format (MP4) is not yet supported (sa_bitstream.h).

saolc external documentation 1 June 1999 32/40

- There are fixed maximum lengths for numbers of pfields to an instrument and number of
parameters to a core opcode or core table generator. There should be no such limits.
(sa_interp.c).

- Because of the way macro-expansion is implemented, when a global variable is imported by
both an instrument and a user-defined opcode called by that instrument, the opcode and
instrument share a single instance of the variable. This violates the NOTE in Subclause
5.8.6.7.6; in particular, changes made in the caller are seen in the callee immediately, rather
than taking a k-cycle to propagate, and changes made in the callee will show up in the caller
even if the callee does not export the variable.

- When two events have different time stamps, but are dispatched in the same k-cycle due to
control-rate quantization of event dispatch, they should be ordered as though they occurred at
the same time. That is, instrument events should precede control events, and so forth per
Subclause 5.7.3.3.6. In the current saolc, though, the event with the earlier timestamp will be
dispatched first. This only makes a difference in rare cases, which can be worked around by
making small (< 1 k-period) adjustments to the event times (saol_sched.c).

- Some behaviors that should cause errors do not. A complete list of these has not been
determined, but includes:

- Local variables that have the same name as core opcodes or other standard symbols
should be prohibited (5.8.2.2) but are not.

- Sampling rates are not restricted to 4000-96000 Hz, as required in 5.8.5.2.1.

- Not all rate-mismatch errors are found.

For such behaviors, content authors using saolc must ensure that their orchestras meet the
actual requirements of the standard, not the laxer requirements of saolc.

7.5. Extensions
Some features of saolc provide functions that are not required of normative operations. Content authors
using saolc should not depend upon these functions if they wish their bitstreams to be properly decoded by
a normative decoder.

- Command-line processing. There are many options that can be used on the saolc command
line to use saolc in a variety of standalone ways as well as to do bitstream decoding.

- Preprocessing. The C preprocessor can be used to expand macros and #defines in SAOL code
before it is parsed. Content authors using saolc should be wary of depending too heavily on
this feature, as it is not likely to be widely supported in other implementations.

- idump(), kdump(), and adump() debugging core opcodes. These opcodes each dump one or
more arguments to stdout and can be used to debug SAOL code. kdump() and adump()
may be transported in the MP4 bitstream created with saencode— two of the "free" tokens are
used for this purpose.

- Sound-file input for the sample core wavetable generator. When SAOL or SASL code in the
textual format uses the sample generator, the first argument is a string constant, giving the
name of an AIFF sound file containing a sample. There is no normative requirement for a
Structured Audio decoder to handle AIFF files or samples on disk..

- Sound-file input to input_bus. Normally, sound on the global input_bus is only provided
when the SAOL process is running as an AudioFX node in AudioBIFS. Using the -input
command-line switch allows the decoder to run in standalone mode as an effects-processor.

saolc external documentation 1 June 1999 33/40

7.6. Bugs in the standard that are fixed in saolc
There are a few bugs left in the text of the standard that will be submitted as official corrigenda. When
possible, saolc conforms to the correct version, not the broken version. Here is the known list of such
items. All are fixed in saolc except where noted.

- Subclause 5.10.5 (buzz core table generator): should include the statement "If nharm < 1,
then nharm = size / 2 – lowharm."

- Subclauses 5.9.3.6 (buzz core opcode) and 5.10.5 (buzz core table generator): Should include
the statement "If rolloff is equal to 1, then scale is 1."

- Annex 5.A (token table). There is no token for startup. This is needed for orchestras that
convey a startup instrument with no token table. The token 0x4B is used for the lexeme
startup.

- Annex 5.C.3. The yacc code for the template expression is wrong (see also Section 7.2 #1)
(not fixed in saolc).

- Subclause 5.8.6.7.14. The not and unary negation operations should associate right-to-left,
not left-to-right, and should be at the same level.

- Subclause 5.9.9.6. The proper pseudocode for biquad is

 to = input * b0 + w2;
 w2 = w1 - a1 * to + b1 * input;
 w1 = -a2 * to + b2 * input;

-

7.7. saolc portability
saolc is widely portable. All of the core bitstream-processing and algorithmic synthesis (Object 3) code
works without difficulty on a variety of platforms. This section contains a short list of the known obstacles
to porting saolc to new platforms.

- The ANSI C++ standard template library is required. The bitstream-parsing code in
sa_bitstream.h uses the <vector> template. The simple encoder saenc (see Section 8)
additionally requires the <priority queue> template. Most modern C++ compilers provide
support for the standard template library.

- The sasbf implementation is not 64-bit clean, as the file parser for DLS-2 files makes
assumptions about the relationship between pointer size and float size. Thus, the sasbf()
expression in saolc cannot be used on architectures with 64-bit pointers such as the DEC
Alpha.

7.8. Possible optimizations
saolc runs very slowly right now compared to well-tuned software synthesizers such as Csound or
Supercollider. This is mostly because, as a reference implementation, it is important to keep the
functioning as clear as possible, even at the expense of efficiency. Only a few of the aspects of the current
codebased originated with an intent to increase speed. Primary among these is the use of macro expansion
to implement user-defined opcodes; this improved the speed by nearly 40% over a previous version that
used dynamic stack frames. (The macro expansion is hard to understand, but so were the stack frames!)

The removal of unused variables was originally intended to improve speed— it did in an earlier version of
the code— but since identifiers are now linked directly to the symbol table and thereby to the offset within
the framevals array, there’s no real improvement anymore.

Optimizations that might give good speedups include:

1. Converting the parse tree into a p-code structure, for example, a 3-argument machine with much
simpler opcodes. This would eliminate most of the recursion overhead due to traversing the parse tree

saolc external documentation 1 June 1999 34/40

(currently 30% of the cycles in saolc), as well as simplifying variable-lookup, as the local variable
addresses would be implemented in terms of a stack pointer.

2. Detection of algorithms which can be block-processed (see the discussion of block processing in
Scheirer & Vercoe, 1999). Not every algorithm can be legally block-processed in SAOL, but the ones
that can, can be speeded up greatly. This would involve writing a static analyzer to determine when it
is not possible for an instrument to be using single-sample feedback (which is the case that prohibits
block-processing), and then updating all of the interpreter clauses and core opcode implementation
functions to be responsive to that information.

3. A stronger focus on static optimization using standard techniques from the compiler literature— for
example, common subexpression elimination and removal of dead code. This would likely be most
effective in conjunction with (1).

4. On some architectures, integer arithmetic runs faster than floating-point arithmetic. It is often possible
to statically detect when a variable is an integer, and when it is a float, even though there are no
explicit integer types in SAOL. (For example, if all you ever do with i is say “i = 0” and “i = i + 1”
you can tell statically that i takes on only integral values). Integer detection and corresponding
manipulations of loop structures and variable types might give improved performance on these
architectures.

5. Most of the core opcodes could be improved a bit simply by tuning loops, using different data
structures, etc. This would give good results for instruments making heavy use of those opcodes.

It is to be emphasized that most of the time in saolc is currently overhead— only about 15% of the
processing cycles are actually doing synthesis! Thus, tuning the synthesis code for speed will have little
effect unless the overall framework is improved first. A system like Csound spends about 85% of its cycles
doing synthesis, just the inverse of saolc. (But Csound has the advantage of block-based semantics and a
much simpler expression grammar).

The Media Lab is happy to host any patches or new versions of saolc that run faster on the main SA web
site. Some other groups working on SAOL implementations are more focused on efficiency— see the
pointers on the SA web site.

saolc external documentation 1 June 1999 35/40

8. A simple Structured Audio encoder: saenc

8.1. Introduction
The saolc package includes a very simple Structured Audio encoder program, called saenc. saenc takes a
number of component files stored on disk— SAOL programs, SASL scores, sample data, and MIDI files—
and allows them to be flexibly assembled into the official bitstream format. It then wraps the bitstream
format with simple framing information and calls the result an MP4 file.

The MP4 file produced by this tool is not stored in the official MP4 file format, which had not been
completed as of this document. In the long run, these two tools may be easily converged. The MP4 file
produced by saenc may be viewed as a "raw stream data" file— it contains the decoder configuration
information, and a sequence of SA Access Units, but without the complex framing and timestamping
available within the final MP4 format.

saolc can read and parse raw stream MP4 files produced by saenc, and decode the resulting instructions
into sound. In the long run, it will also read and parse the official MP4 file format, but this is not supported
yet (see section 7.3).

This section describes the operation and functioning of saenc. Subclause 5.5.2, which describes the
bitstream format, is a useful reference.

8.2. Using saenc
The saenc command line is very simple:

saenc filename

filename is typically given with the .mp4 extension, eg saenc test.mp4.

During execution, saenc leads the user through a series of command-line prompts that enable different
chunks of data to be added to the encoded file. First, chunks are added to the decoder configuration
header. Then, when all the chunks desired are included in the configuration header, chunks are added to
the streaming data. When all the data desired are included in the streaming data segment, the file is written
to disk.

8.3. Adding chunks to the decoder configuration header
During the decoder-configuration-header part of the encoding process, the following prompt is given:

Chunk types: 1=SAOL 2=SASL 3=sample 4=MIDI 5=SASBF (0=done)
Type, name:

The user enters a value indicating the type of the chunk, and the filename that contains the data. For
example:

Type, name: 1 piano.saol

For type 1 (SASL) chunks, saenc reads in the requested file, tokenizes the code, and adds the
corresponding SAOL chunk to the header.

For type 2 (SASL) chunks, an additional prompt is presented:
start end shift:

This prompt indicates that saenc allows the score to be segmented and time-shifted as it is added to the
header. Only score events between the given start and end times are incorporated, and each score event is
time-shifted by shift beats. For example

start end shift: 2.5 0 –2

indicates that only score events more than 2.5 beats into the score file should be used (end=0 indicates that
all events to the end-of-file should be used), and each event should be shifted 2 beats earlier in time. The
given SASL score is segmented, shifted, tokenized, and added to the header.

saolc external documentation 1 June 1999 36/40

For type 3 (sample) chunks, an AIFF file is read. If the file is stereo, the user is prompted to select a
channel to include (since only mono samples are in the sample block of the bitstream1). If 0 is entered, all
channels of the sound file are averaged.

For type 4 (MIDI) files, a Standard MIDIFile is read. No parsing of the MIDIFile occurs during encoding;
the entire file is placed in the header regardless of its contents.

For type 5 (SASBF) files, a SASBF (DLS-2) file is read. No parsing of the DLS-2 file occurs during
encoding; the entire file is placed in the header regardless of its contents.

When 0 is entered, the header is complete. saenc then prompts for the inclusion of the symbol table. This
table gives a list of all the user-defined symbols in the orchestra. When SAOL code is tokenized, each
operator, keyword, core opcode, and so on is turned into a 8-bit value. An escape value (0xF0) is used to
indicate symbols, which are the different variable names, user-defined opcode names, and so forth in the
instrument. Each symbol is conveyed with a 16-bit value; each time the same symbol appears, the same
value is conveyed. The bitstream symbol table gives the value-name associations for the orchestra, which
allows the tokenized orchestra to be converted back into readable textual SAOL.

The symbol table is not necessary; it is possible to decode the orchestra correctly simply by giving the first
symbol the name _sym_0, the second _sym_1, and so forth. To do this makes the orchestra less human-
readable, but syntactically identical. Using the symbol table allows human-readable text to be recovered at
the expense of some added bits in the compressed file (the exact number of added bits depends on the
number of symbols in the orchestra).

8.4. Adding chunks to the streaming bitstream data
After the header is complete, the streaming part of the bitstream may be formed. This is accomplished by
giving several files containing time-stamped events to the encoder; the encoder sorts them together, and
produces time-stamped Access Units according the proper bitstream format. In a streaming encoder, each
Access Unit would be sent off over the network; in saenc they are all just written into the MP4 file directly
after the decoder configuration header.

The prompt for streaming data looks like this:
Chunk types: 2=SASL 3=sample 4=MIDI 6=data blocks (0=done)
Type, name:

Options 2 and 4 are very similar to their counterparts in the decoder configuration header. They both allow
the events to be segmented and time-shifted as in the score-processing for the header. For option 4, the
Standard MIDIFile is parsed and the delta-times are interpreted, in order to give each event an actual
timestamp. These timestamps are used to time-stamp the access units.

Option 3 is not done yet as of this writing.

Option 6 allows "streaming wavetable" data to be included in the bitstream. A set of datafiles should be
prepared, with filenames sharing a common stem, like my_data0.dat, my_data1.dat,
my_data2.dat.... Each datafile should contain frames of signed 16-bit big-endian integers. Each frame
begins with a 16-bit length tag and then consists of that many 16-bit values. All of these files are read in
order to make one long sequence of frames:

my_data0.dat
3 –45 6 140
5 200 –12348 72 0 –1
...

my_data1.dat
2 –1 1
12 0 0 0 0 0 45 0 0 0 0 –85 5
...

1 This is because SAOL wavetables are mono-only, and thus there is no way to store a stereo sample in a wavetable. A
better encoder could turn a stereo input file into multiple samples, with names related in some useful way.

saolc external documentation 1 June 1999 37/40

This datablock sequence consists of four frames, with three values in the first frame, five in the second, two
in the third, and 12 in the fourth.

The filename given for option 6 should not be the whole filename, but only the stem ("my_data" for this
example). saenc requests an offset, which is the time at which to send the first frame of data, and the
blockrate, which is the number of blocks to send per second.

Each frame of data is packed into a pair of bitstream elements: a table sample score line in SASL and a
sample bitstream data chunk. These elements are associated together so that when the Access Unit is
parsed, the data in the frame is poured into the wavetable. The name of the wavetable is the same as the
name of the datafile stem ("my_data"). In a SAOL instrument that imports the wavetable with this name
(that is, with the declaration imports table my_data), each time one of the data frames occurs in the
bitstream, the values in the wavetable are silently replaced with new values.

This function allows the construction of analysis-synthesis tools and natural audio coders in the SA
bitstream. See the papers by Scheirer & Kim and by Wright & Scheirer, referenced in Section 9.2, for
concrete examples.

saolc external documentation 1 June 1999 38/40

9. References and Credits

9.1. Introduction
This section provides references to the technical literature, an annotated bibliography for further reading,
and credits to all the people who worked on saolc.

9.2. Technical references
This is a list of papers in the technical literature as of August 1999 that deal directly or indirectly with the
MPEG-4 Structured Audio standard. Copies of many of these can be found at the SA home page.

1. Casey, M. A. & Smaragdis, P. J. (1996). Netsound: Real-time audio from semantic descriptions. In
Proceedings of the 1996 Int. Computer Music Conf. (pp. 143). Hong Kong: International Computer
Music Association.

2. Casey, M. A. (1998) Auditory Group Theory with Applications to Statistical Basis Methods for
Structured Audio. Unpublished Ph.D. dissertation, MIT Media Laboratory, Cambridge MA.

3. Koenen, R. (1999). MPEG-4: Multimedia for our time. IEEE Spectrum 36(2), 26-33.

4. Scheirer, E. D. (1998). The MPEG-4 Structured Audio standard. In Proceedings of the 1998 IEEE Int.
Conf. Acoust. Speech Sig. Proc. (pp. 3801-3804). Seattle.

5. Scheirer, E. D. (1998). The MPEG-4 Structured Audio Orchestra Language. In Proceedings of the
1998 Int. Computer Music Conf. (pp. 432-438). Ann Arbor, MI.

6. Scheirer, E. D. (1999). Structured audio and effects processing in the MPEG-4 multimedia standard.
Multimedia Systems 7(1), 11-22.

7. Scheirer, E. D. & Kim, Y. E. (1999). Generalized audio coding with MPEG-4 Structured Audio. In
Proceedings of the Audio Eng. Soc. 17th International Convention on High-Quality Audio Coding.
Florence, IT.

8. Scheirer, E. D., Lee, Y. & Yang, J.-W. (in press, a). Synthetic audio and SNHC audio in MPEG-4. In
A. Puri & T. Chen (eds.), Advances in Multimedia: Systems, Standards, and Networks. New York:
Marcel Dekker.

9. Scheirer, E. D., Lee, Y. & Yang, J.-W. (in press, b). Synthetic audio and SNHC audio in MPEG-4. To
appear in Image Communications.

10. Scheirer, E. D. & Ray, L. (1998). Algorithmic and wavetable synthesis in the MPEG-4 multimedia
standard. Presented at the 105th Convention of the Audio Eng. Soc. (AES reprint #4811). San
Francisco.

11. Scheirer, E. D., Väänänen, R. & Huopaniemi, J. (1998). AudioBIFS: The MPEG-4 standard for effects
processing. In Proceedings of the 1998 Digital Audio Effects Workshop (DAFX-98) (pp. 159-167).
Barcelona: Audiovisual Institute, Pompeu Fabra University.

12. Scheirer, E. D., Väänänen, R. & Huopaniemi, J. (1999). AudioBIFS: Describing audio scenes with the
MPEG-4 multimedia standard. IEEE Transactions on Multimedia 1(3).

13. Scheirer, E. D. & Vercoe, B. L. (1999). SAOL: The MPEG-4 Structured Audio Orchestra Language.
Computer Music Journal 23(2), 31-51.

14. Smith, J. O (1991). Viewpoints on the history of digital synthesis. In Proceedings of the 1991 Int.
Computer Music Conf. (pp. 1-10). Montreal.

15. Vercoe, B. L., Gardner, W. G. & Scheirer, E. D. (1998). Structured audio: The creation, transmission,
and rendering of parametric sound representations. Proceedings of the IEEE 85(5), 922-940.

16. Wessel, D. (1991). Let's develop a common language for synth programming. Electronic Musician
magazine, pp. 114 (August issue).

saolc external documentation 1 June 1999 39/40

17. Wright, M. & Scheirer, E. D. (1999). Cross-coding SDIF into MPEG-4 Structured Audio. In
Proceedings of the 1999 Int. Computer Music Conf. Beijing.

9.3. Bibliography
This is a list of books and other references that provide background reading regarding the concepts in the
implementation of saolc.

1. Aho, A. V., Sethi, R. & Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley.

This is a classic text on compiler-design. Particularly for readers unfamiliar with parsing, syntax-checking,
and interpreting computer code, this is valuable reading for anyone who wants to understand saolc and
other implementations of SA tools.

2. Mathews, M. V. (1961). An acoustic compiler for music and psychological stimuli. Bell Systems
Technical Journal 40, 677-694.

3. Mathews, M. V. (1963). The digital computer as a musical instrument. Science 142, 553-557.

4. Mathews, M. V. (1969). The technology of computer music. Cambridge, MA: MIT Press.

Max Mathews was the inventor of the basic concept underlying the SAOL synthesizer – that of the “unit
generator” or “Music-N” computer language. A Music-N language uses a textual language to patch
together unit generators, oscillators, and wavetables to describe a desired synthesis algorithm. These three
references were among the earliest in the computer-music field and set off a chain of implementation and
refinement that ultimately led to the development of the Structured Audio standard.

5. MIDI Manufacturers Association. 1996. The Complete MIDI 1.0 Detailed Specification. Protocol
specification, Los Angeles, MIDI Manufacturers Association.

This is the official specification of the MIDI protocol. It makes interesting reading, both as a historical
document and to help understand the MIDI capabilities of the Structured Audio tools.

6. Roads, C. (1996). The Computer Music Tutorial. Cambridge, MA: MIT Press.

This is an encyclopedic presentation of nearly all topics in the computer-music field as of its writing.
Readers who want to learn more about the functioning and history of the core unit generators or the kinds
of synthesis algorithms that might be implemented in Structured Audio should start here and then proceed
through its voluminous bibliography.

9.4. Credits
This is a list of people who have contributed code to saolc. If you have contributed code or bugfixes and
you’re not listed here, it’s due to an oversight. Please send email to eds@media.mit.edu and it will be
corrected in the next release. All responsibility for bugs in saolc belongs to Eric Scheirer as the primary
integrator.

Name Organization Contributions

Steven Curtin Lucent Technology Assorted bugfixes

Luke Dahl E-Mu/Creative Interface between main SAOL synth and DLS-2 synth.

Alexandros Eleftheriadis
Yihan Fang

Columbia Univ. Bitstream-parsing code: bitstream.cpp,
flerror.cpp, bitstream.h, and associated header
files. Also the Flavor bitstream-parser generator, which
was used to create the basis (with later modifications) of
sa_bitstream.cpp

Daniel P. W. Ellis MIT Media Lab & Code borrowed from Csound, for reading/writing audio
files and performing FFTs: aifif.c, byteswap.c,

saolc external documentation 1 June 1999 40/40

ICSI Berkeley fft.c, and associated header files

Todor Fay Microsoft DLS parser: loadicol.cpp, dls_wrapper.cpp,
instr.cpp, clist.cpp, and associated header files.

William Gardner MIT Media Lab IEEE80.c, which is needed by aifif.c, originally
written for Csound.

John Lazzaro Berkeley CS Dept Many bugfixes, and outstanding assistance in making
the software match the standard.

Eric D. Scheirer MIT Media Lab Main codebase, code integration, and everything else not
listed here.

David Sparks E-Mu/Creative DLS-2 software synth: sf_*.{c,h}

Naoya Tanaka Matsushita PICOLA speed-change tool and connection to decoder:
fx_picola.{c,h} and co_fx_speedc() in
saol_co_imp.c

Giorgio Zoia EPFL Switzerland tempo-change code in saol_sched.c, assorted
bugfixes

