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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

Draft Guides adopted by the responsible Committee or Group are circulated to the member bodies for voting. 
Publication as a Guide requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

This first edition of Supplement 1 to ISO/IEC Guide 98-3 has been prepared by Working Group 1 of the 
JCGM, and has benefited from detailed reviews undertaken by member organizations of the JCGM and 
National Metrology Institutes. For further information, see the Introduction (0.2). 

ISO/IEC Guide 98 consists of the following parts, under the general title Uncertainty of measurement: 

⎯ Part 1: Introduction to the expression of uncertainty in measurement 

⎯ Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) 

The following parts are planned: 

⎯ Part 2: Concepts and basic principles 

⎯ Part 4: Role of measurement uncertainty in conformity assessment 

⎯ Part 5: Applications of the least-squares method 

ISO/IEC Guide 98-3 has one supplement. 

⎯ Supplement 1: Propagation of distributions using a Monte Carlo method 

The following supplements to ISO/IEC Guide 98-3 are planned: 

⎯ Supplement 2: Models with any number of output quantities 

⎯ Supplement 3: Modelling 

Note that in this document, GUM is used to refer to the industry-recognized publication, adopted as 
ISO/IEC Guide 98-3:2008. When a specific clause or subclause number is cited, the reference is to 
ISO/IEC Guide 98-3:2008. 
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Introduction 

0.1 General 

This Supplement to the Guide to the expression of uncertainty in measurement (GUM) is concerned with the 
propagation of probability distributions through a mathematical model of measurement 
[ISO/IEC Guide 98-3:2008, 3.1.6] as a basis for the evaluation of uncertainty of measurement, and its 
implementation by a Monte Carlo method. The treatment applies to a model having any number of input 
quantities, and a single output quantity. 

The described Monte Carlo method is a practical alternative to the GUM uncertainty framework 
[ISO/IEC Guide 98-3:2008, 3.4.8]. It has value when 

a) linearization of the model provides an inadequate representation or 

b) the probability density function (PDF) for the output quantity departs appreciably from a Gaussian 
distribution or a scaled and shifted t-distribution, e.g. due to marked asymmetry. 

In case a), the estimate of the output quantity and the associated standard uncertainty provided by the GUM 
uncertainty framework might be unreliable. In case b), unrealistic coverage intervals (a generalization of 
“expanded uncertainty” in the GUM uncertainty framework) might be the outcome. 

The GUM [ISO/IEC Guide 98-3:2008, 3.4.8] “…provides a framework for assessing uncertainty …”, based on 
the law of propagation of uncertainty [ISO/IEC Guide 98-3:2008, Clause 5] and the characterization of the 
output quantity by a Gaussian distribution or a scaled and shifted t-distribution 
[ISO/IEC Guide 98-3:2008, G.6.2, G.6.4]. Within that framework, the law of propagation of uncertainty 
provides a means for propagating uncertainties through the model. Specifically, it evaluates the standard 
uncertainty associated with an estimate of the output quantity, given 

1) best estimates of the input quantities, 

2) the standard uncertainties associated with these estimates, and, where appropriate, 

3) degrees of freedom associated with these standard uncertainties, and 

4) any non-zero covariances associated with pairs of these estimates. 

Also within the framework, the PDF taken to characterize the output quantity is used to provide a coverage 
interval, for a stipulated coverage probability, for that quantity. 

The best estimates, standard uncertainties, covariances and degrees of freedom summarize the information 
available concerning the input quantities. With the approach considered here, the available information is 
encoded in terms of PDFs for the input quantities. The approach operates with these PDFs in order to 
determine the PDF for the output quantity. 

Whereas there are some limitations to the GUM uncertainty framework, the propagation of distributions will 
always provide a PDF for the output quantity that is consistent with the PDFs for the input quantities. This PDF 
for the output quantity describes the knowledge of that quantity, based on the knowledge of the input 
quantities, as described by the PDFs assigned to them. Once the PDF for the output quantity is available, that 
quantity can be summarized by its expectation, taken as an estimate of the quantity, and its standard 
deviation, taken as the standard uncertainty associated with the estimate. Further, the PDF can be used to 
obtain a coverage interval, corresponding to a stipulated coverage probability, for the output quantity. 



ISO/IEC GUIDE 98-3/Suppl.1:2008(E) 

 

© ISO/IEC 2008 – All rights reserved  vii
 

The use of PDFs as described in this Supplement is generally consistent with the concepts underlying the 
GUM. The PDF for a quantity expresses the state of knowledge about the quantity, i.e. it quantifies the degree 
of belief about the values that can be assigned to the quantity based on the available information. The 
information usually consists of raw statistical data, results of measurement, or other relevant scientific 
statements, as well as professional judgement. 

In order to construct a PDF for a quantity, on the basis of a series of indications, Bayes’ theorem can be 
applied [27, 33]. When appropriate information is available concerning systematic effects, the principle of 
maximum entropy can be used to assign a suitable PDF [51, 56]. 

The propagation of distributions has wider application than the GUM uncertainty framework. It works with 
richer information than that conveyed by best estimates and the associated standard uncertainties (and 
degrees of freedom and covariances when appropriate). 

Decimal sign: The decimal sign in the English text is the point on the line, and the comma on the line is the 
decimal sign in the French text. (See 4.12) 

An historical perspective is given in Annex A. 

NOTE 1 The GUM provides an approach when linearization is inadequate [ISO/IEC Guide 98-3:2008, 5.1.2 Note]. The 
approach has limitations: only the leading non-linear terms in the Taylor series expansion of the model are used, and the 
PDFs for the input quantities are regarded as Gaussian. 

NOTE 2 Strictly, the GUM characterizes the variable (Y − y)/u(y) by a t-distribution, where Y is the output quantity, y an 
estimate of Y, and u(y) the standard uncertainty associated with y [ISO/IEC Guide 98-3:2008, G.3.1]. This characterization 
is also used in this Supplement. [The GUM in fact refers to the variable (y − Y)/u(y).] 

NOTE 3 A PDF for a quantity is not to be understood as a frequency density. 

NOTE 4 “The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it depends on detailed 
knowledge of the nature of the measurand and of the measurement method and procedure used. The quality and utility of 
the uncertainty quoted for the result of a measurement therefore ultimately depends on the understanding, critical 
analysis, and integrity of those who contribute to the assignment of its value.” [17]. 

0.2 JCGM background information 

In 1997, the Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the Bureau 
International des Poids et Mesures (BIPM), was created by the seven international organizations that had 
originally in 1993 prepared the Guide to the expression of uncertainty in measurement (GUM) and the 
International vocabulary of basic and general terms in metrology (VIM). The JCGM assumed responsibility for 
these two documents from the ISO Technical Advisory Group 4 (TAG4). 

The Joint Committee is formed by the BIPM with the International Electrotechnical Commission (IEC), the 
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the International Organization 
for Standardization (ISO), the International Union of Pure and Applied Chemistry (IUPAC), the International 
Union of Pure and Applied Physics (IUPAP), and the International Organization of Legal Metrology (OIML). A 
further organization joined these seven international organizations, namely, the International Laboratory 
Accreditation Cooperation (ILAC). 

JCGM has two Working Groups. Working Group 1, “Expression of uncertainty in measurement”, has the task 
to promote the use of the GUM and to prepare Supplements and other documents for its broad application. 
Working Group 2, “Working Group on International vocabulary of basic and general terms in metrology (VIM)”, 
has the task to revise and promote the use of the VIM. For further information on the activity of the JCGM, see 
www.bipm.org. 

Supplements such as this one are intended to give added value to the GUM by providing guidance on aspects 
of uncertainty evaluation that are not explicitly treated in the GUM. The guidance will, however, be as 
consistent as possible with the general probabilistic basis of the GUM. 

 

http://www.bipm.org/
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Uncertainty of measurement 

Part 3: 
Guide to the expression of uncertainty in measurement 
(GUM:1995) 

Supplement 1: 
Propagation of distributions using a Monte Carlo method 

1 Scope 

This Supplement provides a general numerical approach, consistent with the broad principles of the GUM 
[ISO/IEC Guide 98-3:2008, G.1.5], for carrying out the calculations required as part of an evaluation of 
measurement uncertainty. The approach applies to arbitrary models having a single output quantity where the 
input quantities are characterized by any specified PDFs [ISO/IEC Guide 98-3:2008, G.1.4, G.5.3]. 

As in the GUM, this Supplement is primarily concerned with the expression of uncertainty in the measurement 
of a well-defined physical quantity—the measurand—that can be characterized by an essentially unique value 
[ISO/IEC Guide 98-3:2008, 1.2]. 

This Supplement also provides guidance in situations where the conditions for the GUM uncertainty 
framework [ISO/IEC Guide 98-3:2008, G.6.6] are not fulfilled, or it is unclear whether they are fulfilled. It can 
be used when it is difficult to apply the GUM uncertainty framework, because of the complexity of the model, 
for example. Guidance is given in a form suitable for computer implementation. 

This Supplement can be used to provide (a representation of) the PDF for the output quantity from which 

a) an estimate of the output quantity, 

b) the standard uncertainty associated with this estimate, and 

c) a coverage interval for that quantity, corresponding to a specified coverage probability 

can be obtained. 

Given (i) the model relating the input quantities and the output quantity and (ii) the PDFs characterizing the 
input quantities, there is a unique PDF for the output quantity. Generally, the latter PDF cannot be determined 
analytically. Therefore, the objective of the approach described here is to determine a), b), and c) above to a 
prescribed numerical tolerance, without making unquantified approximations. 

For a prescribed coverage probability, this Supplement can be used to provide any required coverage interval, 
including the probabilistically symmetric coverage interval and the shortest coverage interval. 

This Supplement applies to input quantities that are independent, where each such quantity is assigned an 
appropriate PDF, or not independent, i.e. when some or all of these quantities are assigned a joint PDF. 

Typical of the uncertainty evaluation problems to which this Supplement can be applied include those in which 

⎯ the contributory uncertainties are not of approximately the same magnitude [ISO/IEC Guide 98-3:2008, 
G.2.2], 
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⎯ it is difficult or inconvenient to provide the partial derivatives of the model, as needed by the law of 
propagation of uncertainty [ISO/IEC Guide 98-3:2008, Clause 5], 

⎯ the PDF for the output quantity is not a Gaussian distribution or a scaled and shifted t-distribution 
[ISO/IEC Guide 98-3:2008, G.6.5], 

⎯ an estimate of the output quantity and the associated standard uncertainty are approximately of the same 
magnitude [ISO/IEC Guide 98-3:2008, G.2.1], 

⎯ the models are arbitrarily complicated [ISO/IEC Guide 98-3:2008, G.1.5], and 

⎯ the PDFs for the input quantities are asymmetric [ISO/IEC Guide 98-3:2008, G.5.3]. 

A validation procedure is provided to check whether the GUM uncertainty framework is applicable. The GUM 
uncertainty framework remains the primary approach to uncertainty evaluation in circumstances where it is 
demonstrably applicable. 

It is usually sufficient to report measurement uncertainty to one or perhaps two significant decimal digits. 
Guidance is provided on carrying out the calculation to give reasonable assurance that in terms of the 
information provided the reported decimal digits are correct. 

Detailed examples illustrate the guidance provided. 

This document is a Supplement to the GUM and is to be used in conjunction with it. Other approaches 
generally consistent with the GUM may alternatively be used. The audience of this Supplement is that of the 
GUM. 

NOTE 1 This Supplement does not consider models that do not define the output quantity uniquely (for example, 
involving the solution of a quadratic equation, without specifying which root is to be taken). 

NOTE 2 This Supplement does not consider the case where a prior PDF for the output quantity is available, but the 
treatment here can be adapted to cover this case [16]. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in 
measurement (GUM:1995) 

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated 
terms (VIM) 

3 Terms and definitions 

For the purposes of this document, the terms and definitions of the ISO/IEC Guide 98-3 and the 
ISO/IEC Guide 99 apply unless otherwise indicated. Some of the most relevant definitions, adapted where 
necessary from these documents (see 4.2), are given below. Further definitions are given, including definitions 
taken or adapted from other sources, that are important for this Supplement. 

A glossary of principal symbols is given in Annex G. 

3.1 
probability distribution 
〈random variable〉 function giving the probability that a random variable takes any given value or belongs to a 
given set of values 

NOTE The probability on the whole set of values of the random variable equals 1. 

[Adapted from ISO 3534-1:1993, 1.3; ISO/IEC Guide 98-3:2008, C.2.3] 
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NOTE 1 A probability distribution is termed univariate when it relates to a single (scalar) random variable, and 
multivariate when it relates to a vector of random variables. A multivariate probability distribution is also described as a 
joint distribution. 

NOTE 2 A probability distribution can take the form of a distribution function or a probability density function. 

3.2 
distribution function 
function giving, for every value ξ, the probability that the random variable X be less than or equal to ξ: 

( ) Pr( )XG Xξ ξ= u  

[Adapted from ISO 3534-1:1993, 1.4; ISO/IEC Guide 98-3:2008, C.2.4] 

3.3 
probability density function 
derivative, when it exists, of the distribution function 

( ) d ( ) dX Xg Gξ ξ ξ=  

NOTE gx(ξ)  dξ  is the “probability element” 

( )d Pr( d )Xg Xξ ξ ξ ξ ξ= < < +  

[Adapted from ISO 3534-1:1993, 1.5; ISO/IEC Guide 98-3:2008, C.2.5] 

3.4 
normal distribution 
probability distribution of a continuous random variable X having the probability density function 

21 1( ) exp
22Xg ξ µξ

σσ

⎛ ⎞−⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟π ⎝ ⎠⎝ ⎠
 

for −∞ < ξ < +∞ 

NOTE µ  is the expectation and σ  is the standard deviation of X. 

[Adapted from ISO 3534-1:1993, 1.37; ISO/IEC Guide 98-3:2008, C.2.14] 

NOTE The normal distribution is also known as a Gaussian distribution. 

3.5 
t-distribution 
probability distribution of a continuous random variable X having the probability density function 

( 1) 22( 1) 2
( ) 1

( 2)
( )

Xg
ν

ν ξξ
νν ν

− + /
⎛ ⎞Γ +

= +⎜ ⎟⎜ ⎟π Γ / ⎝ ⎠
 

for −∞ < ξ < +∞, with parameter ν, a positive integer, the degrees of freedom of the distribution, where 

1
0

( ) e d , 0z tz t t z− −∞
Γ = >∫  

is the gamma function 
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3.6 
expectation 
property of a random variable, which, for a continuous random variable X characterized by a PDF gX (ξ ), is 
given by 

( ) ( ) dXE X gξ ξ ξ
−

∞

∞
= ∫  

NOTE 1 Not all random variables have an expectation. 

NOTE 2 The expectation of the random variable Z = F(X), for a given function F(X), is 

( ) ( ) ( ) ( ) dXE Z E F X F gξ ξ ξ
−

∞

∞
= =⎡ ⎤⎣ ⎦ ∫  

3.7 
variance 
property of a random variable, which, for a continuous random variable X characterized by a PDF gX (ξ ), is 
given by 

( )2( ) ( ) ( ) dXV X E X gξ ξ ξ
−

∞

∞
= −∫  

NOTE Not all random variables have a variance. 

3.8 
standard deviation 
positive square root [V (X)]1/2 of the variance 

3.9 
moment of order r 
expectation of the rth power of a random variable, namely 

( ) ( ) dX
r rE X gξ ξ ξ

−

∞

∞
= ∫  

NOTE 1 The central moment of order r is the expectation of the random variable Z = [X − E(X)]r. 

NOTE 2 The expectation E(X) is the first moment. The variance V(X) is the central moment of order 2. 

3.10 
covariance 
property of a pair of random variables, which, for two continuous random variables X1 and X2 characterized by 
a joint (multivariate) PDF gX(ξ ), where X = (X1, X2)T and ξ = (ξ1, ξ2)T, is given by 

1 2 1 1 2 2 1 2Cov( , ) [ ( )][ ( )] ( ) d dX X E X E X gξ ξ ξ ξ
− −

∞ ∞

∞ ∞
= − −∫ ∫ X ξ  

NOTE Not all pairs of random variables have a covariance. 

3.11 
uncertainty matrix 
matrix of dimension N × N, containing on its diagonal the squares of the standard uncertainties associated with 
estimates of the components of an N-dimensional vector quantity, and in its off-diagonal positions the 
covariances associated with pairs of estimates 
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NOTE 1 An uncertainty matrix Ux of dimension N × N associated with the vector estimate x of a vector quantity X has 
the representation 

1 1 1

1

( ) ( )

( ) ( )

N

N N N

u x x u x x

u x x u x x

, ,⎡ ⎤
⎢ ⎥=
⎢ ⎥, ,⎣ ⎦

xU
L

M O M
L

 

where u(xi, xi) = u2(xi) is the variance (squared standard uncertainty) associated with xi and u(xi, xj) is the covariance 
associated with xi and xj. u(xi, xj) = 0 if elements Xi and Xj of X are uncorrelated. 

NOTE 2 Covariances are also known as mutual uncertainties. 

NOTE 3 An uncertainty matrix is also known as a covariance matrix or variance-covariance matrix. 

3.12 
coverage interval 
interval containing the value of a quantity with a stated probability, based on the information available 

NOTE 1 A coverage interval is sometimes known as a credible interval or a Bayesian interval. 

NOTE 2 Generally there is more than one coverage interval for a stated probability. 

NOTE 3 A coverage interval should not be termed ‘confidence interval’ to avoid confusion with the statistical concept 
[ISO/IEC Guide 98-3:2008, 6.2.2]. 

NOTE 4 This definition differs from that in the ISO/IEC Guide 99:2007, since the term ‘true value’ has not been used in 
this Supplement, for reasons given in the GUM [ISO/IEC Guide 98-3:2008, E.5]. 

3.13 
coverage probability 
probability that the value of a quantity is contained within a specified coverage interval 

NOTE The coverage probability is sometimes termed “level of confidence” [ISO/IEC Guide 98-3:2008, 6.2.2]. 

3.14 
length of a coverage interval 
largest value minus smallest value in a coverage interval 

3.15 
probabilistically symmetric coverage interval 
coverage interval for a quantity such that the probability that the quantity is less than the smallest value in the 
interval is equal to the probability that the quantity is greater than the largest value in the interval 

3.16 
shortest coverage interval 
coverage interval for a quantity with the shortest length among all coverage intervals for that quantity having 
the same coverage probability 

3.17 
propagation of distributions 
method used to determine the probability distribution for an output quantity from the probability distributions 
assigned to the input quantities on which the output quantity depends 

NOTE The method may be analytical or numerical, exact or approximate. 

3.18 
GUM uncertainty framework 
application of the law of propagation of uncertainty and the characterization of the output quantity by a 
Gaussian distribution or a scaled and shifted t-distribution in order to provide a coverage interval 
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3.19 
Monte Carlo method 
method for the propagation of distributions by performing random sampling from probability distributions 

3.20 
numerical tolerance 
semi-width of the shortest interval containing all numbers that can correctly be expressed to a specified 
number of significant decimal digits 

EXAMPLE All numbers greater than 1.75 and less than 1.85 can be expressed to two significant decimal digits 
as 1.8. The numerical tolerance is (1.85 − 1.75)/2 = 0.05. 

NOTE For the calculation of numerical tolerance associated with a numerical value, see 7.9.2. 

4 Conventions and notation 

For the purposes of this Supplement, the following conventions and notation are adopted. 

4.1 A mathematical model of a measurement [ISO/IEC Guide 98-3:2008, 4.1] of a single (scalar) quantity 
can be expressed as a functional relationship f : 

( )Y f= X  (1) 

where Y is a scalar output quantity and X represents the N input quantities (X1,…,XN)T. Each Xi is regarded as 
a random variable with possible values ξi and expectation xi. Y is a random variable with possible values η 
and expectation y. 

NOTE 1 The same symbol is used for a physical quantity and the random variable that represents that quantity 
(cf. [ISO/IEC Guide 98-3:2008, 4.1.1 Note 1]). 

NOTE 2 Most models of measurement can be expressed in the form of Equation (1). A more general form is 

( , ) 0h Y =X  

which implicitly relates X and Y. In any case, to apply the described Monte Carlo method, it is only necessary that Y can be 
formed corresponding to any meaningful X. 

4.2 This Supplement departs from the symbols often used for ‘PDF’ and ‘distribution function’ [24]. The 
GUM uses the generic symbol f to refer to a model and a PDF. Little confusion arises in the GUM as a 
consequence of this usage. The situation in this Supplement is different. The concepts of model, PDF, and 
distribution function are central to following and implementing the guidance provided. Therefore, in place of 
the symbols f and F to denote a PDF and a distribution function, respectively, the symbols g and G are used. 
These symbols are indexed appropriately to denote the quantity concerned. The symbol f is reserved for the 
model. 

NOTE The definitions in Clause 3 that relate to PDFs and distributions are adapted accordingly. 

4.3 In this Supplement, a PDF is assigned to a quantity, which may be a single, scalar quantity X or a 
vector quantity X. In the scalar case, the PDF for X is denoted by gX (ξ ), where ξ is a variable describing the 
possible values of X. This X is considered as a random variable with expectation E(X) and variance V(X) 
(3.6, 3.7). 

4.4 In the vector case, the PDF for X is denoted by gX (ξ ), where ξ = (ξ1,…,ξN)T is a vector variable 
describing the possible values of the vector quantity X. This X is considered as a random vector variable with 
(vector) expectation E(X) and covariance matrix V(X). 

4.5 A PDF for more than one input quantity is often called joint even if all the input quantities are 
independent. 

4.6 When the elements Xi of X are independent, the PDF for Xi is denoted by gXi
(ξi). 
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4.7 The PDF for Y is denoted by gY (η) and the distribution function for Y by GY (η). 

4.8 In the body of this Supplement, a quantity is generally denoted by an upper case letter and the 
expectation of the quantity or an estimate of the quantity by the corresponding lower case letter. For example, 
the expectation or an estimate of a quantity Y would be denoted by y. Such a notation is largely inappropriate 
for physical quantities, because of the established use of specific symbols, e.g. T for temperature and t for 
time. Therefore, in some of the examples (Clause 9), a different notation is used. There, a quantity is denoted 
by its conventional symbol and its expectation or an estimate of it by that symbol hatted. For instance, the 
quantity representing the deviation of the length of a gauge block being calibrated from nominal length (9.5) is 
denoted by δL and an estimate of δL by Lδ

︿
. 

NOTE A hatted symbol is generally used in the statistical literature to denote an estimate. 

4.9 In this Supplement, the term “law of propagation of uncertainty” applies to the use of a first-order Taylor 
series approximation to the model. The term is qualified accordingly when a higher-order approximation is 
used. 

4.10 The subscript “c” [ISO/IEC Guide 98-3:2008, 5.1.1] for the combined standard uncertainty is redundant 
in this Supplement. The standard uncertainty associated with an estimate y of an output quantity Y can 
therefore be written as u(y), but the use of uc(y) remains acceptable if it is helpful to emphasize the fact that it 
represents a combined standard uncertainty. The qualifier “combined” in this context is also regarded as 
superfluous and may be omitted: the presence of “y” in “u(y)” already indicates the estimate with which the 
standard uncertainty is associated. Moreover, when the results of one or more uncertainty evaluations 
become inputs to a subsequent uncertainty evaluation, the use of the subscript “c” and the qualifier 
“combined” are then inappropriate. 

4.11 The terms “coverage interval” and “coverage probability” are used throughout this Supplement. The 
GUM uses the term “level of confidence” as a synonym for coverage probability, drawing a distinction between 
“level of confidence” and “confidence level” [ISO/IEC Guide 98-3:2008, 6.2.2], because the latter has a 
specific definition in statistics. Since, in some languages, the translation from English of these two terms yields 
the same expression, the use of these terms is avoided here. 

4.12 According to Resolution 10 of the 22nd CGPM (2003) “ … the symbol for the decimal marker shall be 
either the point on the line or the comma on the line …”. 

Exceptionally, for the decimal sign in this Guide 98 series, it has been decided to adopt the point on the line in 
the English texts and the comma on the line in the French texts. 

4.13 Unless otherwise qualified, numbers are expressed in a manner that indicates the number of 
meaningful significant decimal digits. 

EXAMPLE The numbers 0.060, 0.60, 6.0 and 60 are expressed to two significant decimal digits. The numbers 0.06, 
0.6, 6 and 6 × 101 are expressed to one significant decimal digit. It would be incorrect to express 6 × 101 as 60, since two 
significant decimal digits would be implied. 

4.14 Some symbols have more than one meaning in this Supplement. See Annex G. The context clarifies 
the usage. 

4.15 The following abbreviations are used in this Supplement: 

CGPM Conférence Générale des Poids et Mesures 

IEEE Institute of Electrical and Electronic Engineers 

GUF GUM uncertainty framework 

JCGM Joint Committee for Guides in Metrology 

GUM Guide to the expression of uncertainty in measurement 

MCM Monte Carlo method 

PDF probability density function 

VIM International vocabulary of basic and general terms in metrology 
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5 Basic principles 

5.1 Main stages of uncertainty evaluation 

5.1.1 The main stages of uncertainty evaluation constitute formulation, propagation, and summarizing: 

a) Formulation: 

1) define the output quantity Y, the quantity intended to be measured (the measurand); 

2) determine the input quantities X = (X1,…,XN)T upon which Y depends; 

3) develop a model relating Y and X; 

4) on the basis of available knowledge, assign PDFs—Gaussian (normal), rectangular (uniform), etc.—
to the Xi. Assign instead a joint PDF to those Xi that are not independent; 

b) Propagation: 

propagate the PDFs for the Xi through the model to obtain the PDF for Y; 

c) Summarizing: 

use the PDF for Y to obtain 

1) the expectation of Y, taken as an estimate y of the quantity, 

2) the standard deviation of Y, taken as the standard uncertainty u(y) associated with y 
[ISO/IEC Guide 98-3:2008, E.3.2], and 

3) a coverage interval containing Y with a specified probability (the coverage probability). 

NOTE 1 The expectation may not be appropriate for all applications (cf. [ISO/IEC Guide 98-3:2008, 4.1.4]). 

NOTE 2 The quantities described by some distributions, such as the Cauchy distribution, have no expectation or 
standard deviation. A coverage interval for the output quantity can always be obtained, however. 

5.1.2 The GUM uncertainty framework does not explicitly refer to the assignment of PDFs to the input 
quantities. However [ISO/IEC Guide 98-3:2008, 3.3.5], “… a Type A standard uncertainty is obtained from a 
probability density function … derived from an observed frequency distribution …, while a Type B standard 
uncertainty is obtained from an assumed probability density function based on the degree of belief that an 
event will occur …. Both approaches employ recognized interpretations of probability.” 

NOTE The use of probability distributions in a Type B evaluation of uncertainty is a feature of Bayesian 
inference [21, 27]. Research continues [22] on the boundaries of validity for the assignment of degrees of freedom to a 
standard uncertainty based on the Welch-Satterthwaite formula. 

5.1.3 The steps in the formulation stage are carried out by the metrologist, perhaps with expert support. 
Guidance on the assignment of PDFs (step 4) of stage a) in 5.1.1) is given in this Supplement for some 
common cases (6.4). The propagation and summarizing stages, b) and c) in 5.1.1, for which detailed guidance 
is provided here, require no further metrological information, and in principle can be carried out to any required 
numerical tolerance for the problem specified in the formulation stage. 

NOTE Once the formulation stage a) in 5.1.1 has been carried out, the PDF for the output quantity is completely 
specified mathematically, but generally the calculation of the expectation, standard deviation and coverage intervals 
requires numerical methods that involve a degree of approximation. 
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5.2 Propagation of distributions 

In this Supplement a generally efficient approach for determining (a numerical approximation to) the 
distribution function 

( ) ( ) dY YG g z z
η

η
−∞

= ∫  

for Y is considered. It is based on applying a Monte Carlo method (MCM) as an implementation of the 
propagation of distributions (5.9). 

NOTE A formal definition [9] for the PDF for Y is 

( ) 1( ) ( ) ( ) d dY Ng g fη η ξ ξ
− −

∞ ∞

∞ ∞
= δ −∫ ∫ XL Lξ ξ  

where δ(⋅) denotes the Dirac delta function. This multiple integral cannot generally be evaluated analytically. A numerical 
integration rule can be applied to provide an approximation to gY (η), but this is not an efficient approach. 

5.3 Obtaining summary information 

5.3.1 An estimate y of Y is the expectation E(Y). The standard uncertainty u(y) associated with y is given by 
the standard deviation of Y, the positive square root of the variance V(Y) of Y. 

5.3.2 A coverage interval for Y can be determined from GY (η). Let α denote any numerical value between 
zero and 1 − p, where p is the required coverage probability. The endpoints of a 100p % coverage interval for 
Y are ( )1

YG α−  and ( )1 ,YG p α− +  i.e. the α - and (p + α)-quantiles of GY (η). 

5.3.3 The choice α = (1 − p)/2 gives the coverage interval defined by the (1 − p)/2- and (1 + p)/2-quantiles, 
providing a probabilistically symmetric 100p % coverage interval. 

NOTE When the PDF for Y is symmetric about the estimate y, the coverage interval obtained would be identical to 
y ± Up, where the expanded uncertainty [ISO/IEC Guide 98-3:2008, 2.3.5] Up is given by the product of the standard 
uncertainty u(y) and the coverage factor that is appropriate for that PDF. This PDF is generally not known analytically. 

5.3.4 A numerical value of α  different from (1 − p)/2 may be more appropriate if the PDF is asymmetric. 
The shortest 100p % coverage interval can be used in this case. It has the property that, for a unimodal 
(single-peaked) PDF, it contains the mode, the most probable value of Y. It is given by the numerical value of 
α satisfying ( )( ) ( )( )1 1 ,Y Y Y Yg G g G pα α− −= +  if gY (η) is unimodal, and in general by the numerical value of α such 
that ( ) ( )1 1

Y YG p Gα α− −+ −  is a minimum. 

5.3.5 The probabilistically symmetric 100p % coverage interval and the shortest 100p % coverage interval 
are identical for a symmetric PDF, such as the Gaussian and scaled and shifted t-distribution used within the 
GUM uncertainty framework. Therefore, in comparing the GUM uncertainty framework with other approaches, 
either of these intervals can be used. 

5.3.6 Figure 1 shows the distribution function GY (η) corresponding to an asymmetric PDF. Broken vertical 
lines mark the endpoints of the probabilistically symmetric 95 % coverage interval and broken horizontal lines 
mark the corresponding probability points, viz. 0.025 and 0.975. Continuous lines mark the endpoints of the 
shortest 95 % coverage interval and the corresponding probability points, which are 0.006 and 0.956 in this 
case. The lengths of the 95 % coverage intervals in the two cases are 1.76 unit and 1.69 unit, respectively. 
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Key 

X Output quantity Y/unit 
Y Probability 
“Unit” denotes any unit. 

Figure 1 — A distribution function GY (η) corresponding to an asymmetric PDF and the 
probabilistically symmetric and shortest 95 % coverage intervals (5.3.6) 

5.4 Implementations of the propagation of distributions 

5.4.1 The propagation of distributions can be implemented in several ways: 

a) analytical methods, i.e. methods that provide a mathematical representation of the PDF for Y; 

b) uncertainty propagation based on replacing the model by a first-order Taylor series approximation 
[ISO/IEC Guide 98-3:2008, 5.1.2] — the law of propagation of uncertainty; 

c) as b), except that contributions derived from higher-order terms in the Taylor series approximation are 
included [ISO/IEC Guide 98-3:2008, 5.1.2 Note]; 

d) numerical methods [ISO/IEC Guide 98-3:2008, G.1.5] that implement the propagation of distributions, 
specifically using MCM (5.9). 

NOTE 1 Analytical methods are ideal in that they do not introduce any approximation. They are applicable in simple 
cases only, however. A treatment and examples are available [8, 13]. These methods are not considered further in this 
Supplement, apart from in the examples (Clause 9) for comparison purposes. 

NOTE 2 MCM as considered here is regarded as a means for providing a numerical representation of the distribution 
for the output quantity, rather than a simulation method per se. In the context of the propagation stage of uncertainty 
evaluation, the problem to be solved is deterministic, there being no random physical process to be simulated. 

5.4.2 Approaches to uncertainty evaluation other than the GUM uncertainty framework are permitted by the 
GUM [ISO/IEC Guide 98-3:2008, G.1.5]. The approach advocated in this Supplement, based on the 
propagation of distributions, is general. For linear or linearized models and input quantities for which the PDFs 
are Gaussian, the approach yields results consistent with the GUM uncertainty framework. However, in cases 
where the conditions for the GUM uncertainty framework to be applied (5.7 and 5.8) do not hold, the approach 
of this Supplement can generally be expected to lead to a valid uncertainty statement. 
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5.4.3 An appropriate method has to be chosen for the propagation stage. If it can be demonstrated that the 
conditions necessary for the GUM uncertainty framework to give valid results hold, then that approach can be 
used. If there are indications that the GUM uncertainty framework is likely to be invalid, then another approach 
should be employed. A third situation can arise in which it is difficult to assess whether or not the GUM 
uncertainty framework will be valid. In all three cases, MCM provides a practical (alternative) method. In the 
first case, MCM may sometimes be easier to apply due to difficulties in calculating sensitivity coefficients 
[ISO/IEC Guide 98-3:2008, 5.1.3], for example. In the second, MCM can generally be expected to give valid 
results, since it does not make approximating assumptions. In the third, MCM can be applied either to 
determine the results directly or to assess the quality of those provided by the GUM uncertainty framework. 

5.4.4 The propagation of the PDFs gXi 

(ξi), i = 1,…,N, for the input quantities Xi through the model to provide 
the PDF gY (η) for the output quantity Y is illustrated in Figure 2 for N = 3 independent Xi. Figure 2 may be 
compared to Figure 3 for the law of propagation of uncertainty. In Figure 2, the gXi 

(ξi), i = 1,2,3, are Gaussian, 
triangular, and Gaussian, respectively. gY (η) is indicated as being asymmetric, as generally arises for non-
linear models or asymmetric gXi

(ξi). 

 

Figure 2 — Illustration of the propagation of distributions for N = 3 independent input quantities (5.4.4) 

 

5.4.5 In practice, only for simple cases can the propagation of distributions be implemented without making 
approximations. The GUM uncertainty framework implements one approximate method, and MCM another. 
For a small but important subset of problems, the GUM uncertainty framework is exact. MCM is never exact, 
but is more valid than the GUM uncertainty framework for a large class of problems. 

5.5 Reporting the results 

5.5.1 The following items would typically be reported following the use of the propagation of distributions: 

a) an estimate y of the output quantity Y; 

b) the standard uncertainty u(y) associated with y; 

c) the stipulated coverage probability 100p % (e.g. 95 %); 

d) the endpoints of the selected 100p % coverage interval (e.g. 95 % coverage interval) for Y ;  

e) any other relevant information, such as whether the coverage interval is a probabilistically symmetric 
coverage interval or a shortest coverage interval. 
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5.5.2 y, u(y) and the endpoints of a 100p % coverage interval for Y should be reported to a number of 
decimal digits such that the least significant decimal digit is in the same position with respect to the decimal 
point as that for u(y) [ISO/IEC Guide 98-3:2008, 7.2.6]. One or two significant decimal digits would usually be 
adequate to represent u(y). 

NOTE 1 Each reported numerical value would typically be obtained by rounding a numerical value expressed to a 
greater number of significant decimal digits. 

NOTE 2 A factor influencing the choice of one or two significant decimal digits is the leading significant decimal digit of 
u(y). If this digit is 1 or 2, the deviation of the reported numerical value of u(y) from its numerical value before rounding is 
large relative to the latter numerical value. If the leading significant decimal digit is 9, the deviation is relatively smaller. 

NOTE 3 If the results are to be used within further calculations, consideration should be given to whether additional 
decimal digits should be retained. 

EXAMPLE Reported results corresponding to declaring two significant decimal digits in u(y), for a case in which the 
coverage interval is asymmetric with respect to y, are 

V V
V

1 024 , ( ) 0 028 ,
shortest 95 % coverage interval [0 983,1 088] .
y u y= . = .

= . .
 

The same results reported to one significant decimal digit in u(y) would be 

V V
V

1 02 , ( ) 0 03 ,
shortest 95 % coverage interval [0 98 1 09] .
y u y= . = .

= . , .
 

5.6 GUM uncertainty framework 

5.6.1 The GUM provides general guidance on many aspects of the stages of uncertainty evaluation 
presented in 5.1.1. It also provides the GUM uncertainty framework for the propagation and summarizing 
stages of uncertainty evaluation. The GUM uncertainty framework has been adopted by many organizations, 
is widely used, and has been implemented in standards and guides on measurement uncertainty and also in 
software. 

5.6.2 The GUM uncertainty framework comprises the following stages. Each model input quantity Xi is 
summarized by its expectation and standard deviation, as given by the PDF for that quantity 
[ISO/IEC Guide 98-3:2008, 4.1.6]. The expectation is taken as the best estimate xi of Xi and the standard 
deviation as the standard uncertainty u(xi) associated with xi. This information is propagated, using the law of 
propagation of uncertainty [ISO/IEC Guide 98-3:2008, 5.1.2], through a first- or higher-order Taylor series 
approximation to the model to provide 

a) an estimate y of the output quantity Y and 

b) the standard uncertainty u(y) associated with y. 

The estimate y is given by evaluating the model at the xi. A coverage interval for Y is provided based on taking 
the PDF for Y as Gaussian or, if the degrees of freedom associated with u(y) is finite 
[ISO/IEC Guide 98-3:2008, Annex G], as a scaled and shifted t-distribution. 

NOTE The summaries of the Xi also include, where appropriate, the degrees of freedom associated with the u(xi) 
[ISO/IEC Guide 98-3:2008, 4.2.6]. They also include, where appropriate, covariances associated with pairs of xi 
[ISO/IEC Guide 98-3:2008, 5.2.5]. 

5.6.3 The propagation and summarizing stages of the GUM uncertainty framework (stages b) and c) in 
5.1.1) constitute the following computational steps. Also see Figure 3, which illustrates the law of propagation 
of uncertainty for a model having N = 3 independent input quantities X = (X1, X2, X3)T, which are estimated by 
xi with associated standard uncertainties u(xi), i = 1, 2, 3. The output quantity Y is estimated by y, with 
associated standard uncertainty u(y). 
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a) Obtain from the PDFs for the input quantities X = (X1,…,XN)T the expectations x = (x1,…,xN)T and the 
standard deviations (standard uncertainties) u(x) = [u(x1),…,u(xN)]T. Use instead the joint PDF for X if 
pairs of the Xi are not independent (in which case they have non-zero covariance). 

b) Set the degrees of freedom (infinite or finite) associated with each u(xi). 

c) For each pair i, j for which Xi and Xj are not independent, obtain from the joint PDF for Xi and Xj the 
covariance (mutual uncertainty) u(xi, xj) associated with xi and xj. 

d) Form the partial derivatives of first order of f (X) with respect to X. 

e) Calculate y, the model evaluated at X equal to x. 

f) Calculate the model sensitivity coefficients [ISO/IEC Guide 98-3:2008, 5.1.3] as the above partial 
derivatives evaluated at x. 

g) Calculate the standard uncertainty u(y) by combining u(x), the u(xi, xj), and the model sensitivity 
coefficients [ISO/IEC Guide 98-3:2008, Formulae (10), (13)]. 

h) Calculate νeff, the effective degrees of freedom associated with u(y), using the Welch-Satterthwaite 
formula [ISO/IEC Guide 98-3:2008, Formula (G.2 b)]. 

i) Calculate the expanded uncertainty Up, and hence a coverage interval (for a stipulated coverage 
probability p) for Y, regarded as a random variable, by forming the appropriate multiple of u(y) through 
taking the probability distribution of (Y − y)/u(y) as a standard Gaussian distribution (νeff = ∞) or  
t-distribution (νeff < ∞). 

 

Figure 3 — Illustration of the law of propagation of uncertainty for N = 3 independent input quantities 
(5.4.4 and 5.6.3) 

5.7 Conditions for valid application of the GUM uncertainty framework for linear models 

5.7.1 No condition is necessary for the valid application of the law of propagation of uncertainty to linear 
models (models that are linear in the Xi). 

5.7.2 A coverage interval can be determined, in terms of the information provided in the GUM, under the 
following conditions: 

a) the Welch-Satterthwaite formula is adequate for calculating the effective degrees of freedom associated 
with u(y) [ISO/IEC Guide 98-3:2008, G.4.1], when one or more of the u(xi) has an associated degree of 
freedom that is finite; 

b) the Xi are independent when the degrees of freedom associated with the u(xi) are finite; 

c) the PDF for Y can adequately be approximated by a Gaussian distribution or a scaled and shifted 
t-distribution. 

NOTE 1 Condition a) is required in order that Y can be characterized by an appropriate scaled and shifted t-distribution. 

NOTE 2 Condition b) is required because the GUM does not treat Xi that are not independent in conjunction with finite 
degrees of freedom. 
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NOTE 3 Condition c) is satisfied when each Xi is assigned a Gaussian distribution. It is also satisfied when the 
conditions for the central limit theorem [ISO/IEC Guide 98-3:2008, G.2] hold. 

NOTE 4 The GUM uncertainty framework may not validly be applicable when there is an Xi whose assigned distribution 
is non-Gaussian and the corresponding contribution to u(y) is dominant. 

5.7.3 When the conditions in 5.7.2 hold, the results from the application of the GUM uncertainty framework 
can be expected to be valid for linear models. These conditions apply in many circumstances. 

5.8 Conditions for valid application of the GUM uncertainty framework for non-linear 
models 

5.8.1 The law of propagation of uncertainty can validly be applied for non-linear models under the following 
conditions: 

a) f is continuously differentiable with respect to the elements Xi of X in the neighbourhood of the best 
estimates xi of the Xi; 

b) condition a) applies for all derivatives up to the appropriate order; 

c) the Xi involved in significant higher-order terms of a Taylor series approximation to f(X) are independent; 

d) the PDFs assigned to Xi involved in higher-order terms of a Taylor series approximation to f(X) are 
Gaussian; 

e) higher-order terms that are not included in the Taylor series approximation to f(X) are negligible. 

NOTE 1 Condition a) is necessary for the applicability of the law of propagation of uncertainty based on a first-order 
Taylor series approximation to f(X) when the non-linearity of f is insignificant [ISO/IEC Guide 98-3:2008, 5.1.2]. 

NOTE 2 Condition b) is necessary for the application of the law of propagation of uncertainty based on a higher-order 
Taylor series approximation to f(X) [ISO/IEC Guide 98-3:2008, 5.1.2]. An expression for the most important terms of next 
highest order to be included are given in the GUM [ISO/IEC Guide 98-3:2008, 5.1.2 Note]. 

NOTE 3 Condition c) relates to the statement in the GUM [ISO/IEC Guide 98-3:2008, 5.1.2 Note] concerning significant 
model non-linearity in the case of independent Xi. The GUM does not consider Xi that are not independent in this context. 

NOTE 4 Condition d) constitutes a correction to the statement in the GUM [ISO/IEC Guide 98-3:2008, 5.1.2 Note] that 
the version of the law of propagation of uncertainty using higher-order terms is based on the symmetry of the PDFs for the 
Xi [19, 27]. 

NOTE 5 If the analytical determination of the higher derivatives, required when the non-linearity of the model is 
significant, is difficult or error-prone, suitable software for automatic differentiation can be used. Alternatively, these 
derivatives can be approximated numerically using finite differences [5]. (The GUM provides a finite-difference formula for 
partial derivatives of first order [ISO/IEC Guide 98-3:2008, 5.1.3 Note 2].) Care should be taken, however, because of the 
effects of subtractive cancellation when forming differences between numerically close model values. 

5.8.2 A coverage interval can be determined, in terms of the information provided in the GUM, when 
conditions a), b) and c) in 5.7.2 apply, with the exception that the content of Note 3 in that subclause is 
replaced by “Condition c) is required in order that coverage intervals can be determined from these 
distributions.” 

5.8.3 When the conditions in 5.8.1 and 5.8.2 hold, the results from the application of the GUM uncertainty 
framework can be expected to be valid for non-linear models. These conditions apply in many circumstances. 
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5.9 Monte Carlo approach to the propagation and summarizing stages 

5.9.1 MCM provides a general approach to obtain an approximate numerical representation G, say, of the 
distribution function GY (η) for Y [32, page 75]. The heart of the approach is repeated sampling from the PDFs 
for the Xi and the evaluation of the model in each case. 

5.9.2 Since GY (η) encodes all the information known about Y, any property of Y such as expectation, 
variance and coverage intervals can be approximated using G. The quality of these calculated results 
improves as the number of times the PDFs are sampled increases. 

5.9.3 Expectations and variances (and higher moments) can be determined directly from the set of model 
values obtained. The determination of coverage intervals requires these model values to be ordered. 

5.9.4 If yr, for r = 1,…,M, represent M model values sampled independently from a probability distribution for 
Y, then the expectation E(Y) and variance V(Y) can be approximated using the yr. In general, the moments of Y 
[including E(Y) and V(Y)] are approximated by those of the sampled model values. Let My0

 denote the number 
of yr that are no greater than y0, any prescribed number. The probability Pr(Y u y0) is approximated by My0/M. 
In this way, the yr provide a step function (histogram-like) approximation to the distribution function GY (η). 

5.9.5 Each yr is obtained by sampling at random from each of the PDFs for the Xi and evaluating the model 
at the sampled values so obtained. G, the primary output from MCM, constitutes the yr arranged in strictly 
increasing order. 

NOTE It is remotely possible that equalities exist amongst the yr, in which case suitable minute perturbations made to 
the yr would enable the yr to be arranged in strictly increasing order. See 7.5.1. 

5.9.6 MCM as an implementation of the propagation of distributions is shown diagrammatically in Figure 4 
for M provided in advance (see 7.9 otherwise). MCM can be stated as a step-by-step procedure: 

a) select the number M of Monte Carlo trials to be made. See 7.2; 

b) generate M vectors, by sampling from the assigned PDFs, as realizations of the (set of N) input quantities 
Xi. See 7.3; 

c) for each such vector, form the corresponding model value of Y, yielding M model values. See 7.4; 

d) sort these M model values into strictly increasing order, using the sorted model values to provide G. 
See 7.5; 

e) use G to form an estimate y of Y and the standard uncertainty u(y) associated with y. See 7.6; 

f) use G to form an appropriate coverage interval for Y, for a stipulated coverage probability p. See 7.7. 

NOTE 1 Subclause 6.4 and Annex C provide information on sampling from probability distributions. 

NOTE 2 Mathematically, the average of the M model values is a realization of a random variable with expectation E(Y) 
and variance V(Y)/M. Thus, the closeness of agreement between this average and E(Y) can be expected to be 
proportional to M −1/2. 

NOTE 3 Step e) can equally be carried out by using the M model values of Y unsorted. It is necessary to sort these 
model values to determine the coverage interval in step f). 

5.9.7 The effectiveness of MCM to determine y, u(y) and a coverage interval for Y depends on the use of an 
adequately large value of M [step a) in 5.9.6]. Guidance on obtaining such a value and generally on 
implementing MCM is available [7]. Also see 7.2 and 7.9. 
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Figure 4 — The propagation and summarizing stages of uncertainty evaluation using MCM to 
implement the propagation of distributions (5.9.6 and 7.1) 

5.10 Conditions for the valid application of the described Monte Carlo method 

5.10.1 The propagation of distributions implemented using MCM can validly be applied, and the required 
summary information subsequently determined, using the approach provided in this Supplement, under the 
following conditions: 

a) f is continuous with respect to the elements Xi of X in the neighbourhood of the best estimates xi of the 
Xi; 

b) the distribution function for Y is continuous and strictly increasing; 

c) the PDF for Y is 

1) continuous over the interval for which this PDF is strictly positive, 
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2) unimodal (single-peaked), and 

3) strictly increasing (or zero) to the left of the mode and strictly decreasing (or zero) to the right of the 
mode; 

d) E(Y) and V(Y) exist; 

e) a sufficiently large value of M is used. 

NOTE 1 Regarding condition a), no condition on the derivatives of f is required. 

NOTE 2 Conditions a) and b) are necessary to ensure that the inverse of the distribution function is unique and hence 
coverage intervals can be determined. Only condition a) is needed if a coverage interval is not required. 

NOTE 3 Condition c) is needed only if the shortest coverage interval is to be determined. In that case, the condition is 
necessary to ensure that the shortest coverage interval corresponding to a stipulated coverage probability is unique. The 
mode may occur at an endpoint of the interval over which this PDF is strictly positive, in which case one of the two 
conditions in 3) is vacuous. 

NOTE 4 Condition d) is needed for (stochastic) convergence of MCM as the number M of trials (7.2) increases. 

NOTE 5 Condition e) is necessary to ensure that the summarizing information is reliable. See 8.2. 

5.10.2 When the conditions in 5.10.1 hold, the results from the application of the propagation of distributions 
implemented in terms of MCM can be expected to be valid. These conditions are less restrictive than those 
(5.7 and 5.8) for the application of the GUM uncertainty framework. 

5.11 Comparison of the GUM uncertainty framework and the described Monte Carlo method 

5.11.1 The intention of this subclause is to compare the principles on which the GUM uncertainty framework 
and MCM as an implementation of the propagation of distributions are based. This subclause also provides 
some motivation for the use of MCM in circumstances where it is questionable whether the application of the 
GUM uncertainty framework is valid. 

5.11.2 For the purposes of comparing the GUM uncertainty framework and MCM, it is helpful to review the 
considerations in the GUM regarding Type A and Type B evaluations of uncertainty. For Type A evaluation, 
the GUM provides guidance on obtaining a best estimate of a quantity and the associated standard 
uncertainty from the average and the associated standard deviation of a set of indications of the quantity, 
obtained independently. For Type B evaluation, prior knowledge concerning the quantity is used to 
characterize the quantity by a PDF, from which a best estimate of the quantity and the standard uncertainty 
associated with that estimate are determined. The GUM states that both types of evaluation are based on 
probability distributions [ISO/IEC Guide 98-3:2008, 3.3.4], and that both approaches employ recognized 
interpretations of probability [ISO/IEC Guide 98-3:2008, 3.3.5]. The GUM considers PDFs as underpinning 
uncertainty evaluation: in the context of the law of propagation of uncertainty, it refers explicitly to input and 
output quantities as being describable or characterized by probability distributions [ISO/IEC Guide 98-3:2008, 
G.6.6]. Also see 5.1.2. 

5.11.3 The GUM uncertainty framework does not explicitly determine a PDF for the output quantity. 
However, the probability distribution used by that framework to characterize the output quantity is sometimes 
referred to in this Supplement as “provided by” or “resulting from” the GUM uncertainty framework. 

5.11.4 This Supplement attempts to provide an approach that is as consistent with the GUM as possible, 
especially relating to the use of PDFs for all quantities, but departs from it in a clearly identified way where 
appropriate. These departures are: 

a) PDFs are explicitly assigned to all input quantities Xi (rather than associating standard uncertainties with 
estimates xi of Xi) based on information concerning these quantities. The classification into Type A and 
Type B evaluations of uncertainty is not needed; 

b) sensitivity coefficients [ISO/IEC Guide 98-3:2008, 5.1.3] are not an inherent part of the approach, and 
hence the calculation or numerical approximation of the partial derivatives of the model with respect to 
the Xi is not required. Approximations to sensitivity coefficients can, however, be provided that 
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correspond to taking all higher-order terms in the Taylor series expansion of the model into account 
(Annex B); 

c) a numerical representation of the distribution function for Y is obtained that is defined completely by the 
model and the PDFs for the Xi, and not restricted to a Gaussian distribution or scaled and shifted 
t-distribution; 

d) since the PDF for Y is not in general symmetric, a coverage interval for Y is not necessarily centred on the 
estimate of Y. Consideration therefore needs to be given to the choice of coverage interval corresponding 
to a specified coverage probability. 

5.11.5 Since the GUM uncertainty framework explicitly uses only best estimates xi and the associated 
uncertainties (and covariances and degrees of freedom where appropriate), it is restricted in the information it 
can provide about Y. Essentially it is limited to providing an estimate y of Y and the standard uncertainty u(y) 
associated with y, and perhaps the related (effective) degrees of freedom. y and u(y) will be valid for a model 
that is linear in X. Any other information about Y, e.g. coverage intervals, is derived using additional 
assumptions, e.g. that the distribution for Y is Gaussian or a scaled and shifted t-distribution. 

5.11.6 Some features of MCM are 

a) reduction in the analysis effort required for complicated or non-linear models, especially since the partial 
derivatives of first- or higher-order used in providing sensitivity coefficients for the law of propagation of 
uncertainty are not needed, 

b) generally improved estimate of Y for non-linear models (cf. [ISO/IEC Guide 98-3:2008, 4.1.4]), 

c) improved standard uncertainty associated with the estimate of Y for non-linear models, especially when 
the Xi are assigned non-Gaussian (e.g. asymmetric) PDFs, without the need to provide derivatives of 
higher order [ISO/IEC Guide 98-3:2008, 5.1.2 Note], 

d) provision of a coverage interval corresponding to a stipulated coverage probability when the PDF for Y 
cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution, i.e. 
when the central limit theorem does not apply [ISO/IEC Guide 98-3:2008, G.2.1, G.6.6]. Such an 
inadequate approximation can arise when (1) the PDF assigned to a dominant Xi is not a Gaussian 
distribution or a scaled and shifted t-distribution, (2) the model is non-linear, or (3) the approximation error 
incurred in using the Welch-Satterthwaite formula for effective degrees of freedom is not negligible, and 

e) a coverage factor [ISO/IEC Guide 98-3:2008, 2.3.6] is not required when determining a coverage interval. 

6 Probability density functions for the input quantities 

6.1 General 

6.1.1 This clause gives guidance on the assignment, in some common circumstances, of PDFs to the input 
quantities Xi in the formulation stage of uncertainty evaluation. Such an assignment can be based on Bayes’ 
theorem [20] or the principle of maximum entropy [8, 26, 51, 56]. 

NOTE In some circumstances, another approach for assigning a PDF may be useful. In any case, as in any scientific 
discipline, the reason for the decision should be recorded. 

6.1.2 Generally, a joint PDF gX (ξ) is assigned to the input quantities X = (X1,…,XN)T. See 6.4.8.4 Note 2. 

6.1.3 When the Xi are independent, PDFs gXi(ξi) are assigned individually based on an analysis of a series 
of indications (Type A evaluation of uncertainty) or based on scientific judgement using information [50] such 
as historical data, calibrations, and expert judgement (Type B evaluation of uncertainty) 
[ISO/IEC Guide 98-3:2008, 3.3.5]. 
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6.1.4 When some of the Xi are mutually independent, PDFs are assigned individually to them and a joint 
PDF to the remainder. 

NOTE It may be possible to remove some or all dependencies by re-expressing relevant input quantities in terms of 
more fundamental independent input quantities on which the original input quantities depend [ISO/IEC Guide 98-3:2008, 
F1.2.4, H.1.2]. Such changes can simplify both the application of the law of propagation of uncertainty and the propagation 
of distributions. Details and examples are available [15]. 

6.1.5 Information relevant to the assignment of PDFs to the Xi is contained in the GUM 
[ISO/IEC Guide 98-3:2008, 4.3]. 

6.1.6 Comprehensive guidance on the assignment of PDFs individually or jointly to the Xi is beyond the 
scope of this Supplement. Such assigned PDFs encode the knowledge and expertise of the metrologist who 
formulates the model and who is ultimately responsible for the quality of the final results. 

6.1.7 A standard text on probability distributions is Evans, Hastings and Peacock [18]. 

6.2 Bayes’ theorem 

6.2.1 Suppose that information about an input quantity X consists of a series of indications regarded as 
realizations of independent, identically distributed random variables characterized by a specified PDF, but with 
unknown expectation and variance. Bayes’ theorem can be used to calculate a PDF for X, where X is taken to 
be equal to the unknown average of these random variables. Calculation proceeds in two steps. First, a non-
informative joint prior (pre-data) PDF is assigned to the unknown expectation and variance. Using Bayes’ 
theorem, this joint prior PDF is then updated, based on the information supplied by the series of indications, to 
yield a joint posterior (post-data) PDF for the two unknown parameters. The desired posterior PDF for the 
unknown average is then calculated as a marginal PDF by integrating over the possible values of the 
unknown variance (6.4.9.2). 

6.2.2 With the use of Bayes’ theorem, the updating is carried out by forming the product of a likelihood 
function and the prior PDF [20]. The likelihood function is the product of functions, one function for each 
indication and identical in form, e.g. to a Gaussian PDF with expectation equal to the indication and variance 
formally equal to the unknown variance. The posterior PDF is then determined by integrating this product over 
all possible values of the variance and normalizing the resulting expression. 

NOTE 1 In some cases (e.g. as in 6.4.11), the random variables, of which the indications are regarded as realizations, 
are characterized by a PDF with only one parameter. In such cases, a non-informative prior PDF is assigned to the 
unknown expectation of the random variables, and the posterior distribution for X is given directly by Bayes’ theorem, 
without the need for marginalization. 

NOTE 2 Bayes’ theorem can also be applied in other circumstances, e.g. when the expectation and standard deviation 
are unknown and equal. 

6.3 Principle of maximum entropy 

6.3.1 When using the principle of maximum entropy, introduced by Jaynes [25], a unique PDF is selected 
among all possible PDFs having specified properties, e.g. specified central moments of different orders or 
specified intervals for which the PDF is non-zero. This method is particularly useful for assigning PDFs to 
quantities for which a series of indications is not available or to quantities that have not explicitly been 
measured at all. 

6.3.2 In applying the principle of maximum entropy, to obtain a PDF gX (ξ) that adequately characterizes 
incomplete knowledge about a quantity X according to the information available, the functional 

[ ] ( ) ln ( ) dX XS g g gξ ξ ξ= −∫  

the “information entropy”, introduced by Shannon [48], is maximized under constraints given by the 
information. 
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6.4 Probability density function assignment for some common circumstances 

6.4.1 General 

Subclauses 6.4.2 to 6.4.11 provide assignments of PDFs to quantities based on various types of information 
regarding those quantities. Given for each PDF gX (ξ) are 

a) formulae for the expectation and variance of X, and 

b) the manner in which sampling from gX 
(ξ) can be undertaken. 

Table 1 facilitates the use of these subclauses and also illustrates the corresponding PDFs. 

NOTE These illustrations of the PDFs are not drawn to scale. The multivariate Gaussian PDF is not illustrated. 

6.4.2 Rectangular distributions 

6.4.2.1 If the only available information regarding a quantity X is a lower limit a and an upper limit b with 
a < b, then, according to the principle of maximum entropy, a rectangular distribution R(a, b) over the interval 
[a, b] would be assigned to X. 

6.4.2.2 The PDF for X is 

1 ( )( ) 0, otherwiseX
b a a bg ξξ / − , ,⎧= ⎨ .⎩

u u  

6.4.2.3 X has expectation and variance 

2( )( ) , ( )
2 12

a b b aE X V X+ −= =  (2) 

6.4.2.4 To sample from R(a, b), make a draw r from the standard rectangular distribution R(0, 1) (C.3.3), 
and form 

( )a b a rξ = + −  

6.4.3 Rectangular distributions with inexactly prescribed limits 

6.4.3.1 A quantity X is known to lie between limits A and B with A < B, where the midpoint (A + B)/2 of the 
interval defined by these limits is fixed and the length B − A of the interval is not known exactly. A is known to 
lie in the interval a ± d and B in b ± d, where a, b and d, with d > 0 and a + d < b − d, are specified. If no other 
information is available concerning X, A and B, the principle of maximum entropy can be applied to assign to X 
a “curvilinear trapezoid” (a rectangular distribution with inexactly prescribed limits). 

6.4.3.2 The PDF for X is 

( )
( )
( )

ln ( ) ( ) , ,
1 ln ( ) ( ) , ,( )

4 ln ( ) ( ) , ,
0, otherwise,

X

w d x a d a d
w d w d a d b dg

d w d x b d b d

ξ ξ
ξξ

ξ ξ

⎧ + − − +
⎪ + − + < < −⎪= ⎨

+ − − +⎪
⎪⎩

u u

u u
 (3) 

where x = (a + b)/2 and w = (b − a)/2 are, respectively, the midpoint and semi-width of the interval [a, b] 
[ISO/IEC Guide 98-3:2008, 4.3.9 Note 2]. This PDF is trapezoidal-like, but has flanks that are not straight 
lines. 

NOTE Formula (3) can be expressed as 

1( ) max ln , 0
4 max( )X

w dg
d x w d

ξ
ξ

⎛ ⎞+= ⎜ ⎟⎜ ⎟− , −⎝ ⎠
 

for computer implementation. 
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Table 1 — Available information and the PDF assigned on the basis of that information 
(6.4.1 and C.1.2) 

Available information Assigned PDF and illustration (not to scale) Subclause

Lower and upper limits a, b Rectangular: 
R(a, b) 

 

6.4.2 

Inexact lower and upper limits a ± d, 
b ± d 

Curvilinear trapezoid: 
CTrap(a, b, d) 

 

6.4.3 

Sum of two quantities assigned 
rectangular distributions with lower 
and upper limits a1, b1 and a2, b2 

Trapezoidal: 
Trap(a, b, β) with a = a1 + a2, 
b = b1 + b2, 
β =⏐(b1 − a1) − (b2 − a2)⏐/(b − a) 

 

6.4.4 

Sum of two quantities assigned 
rectangular distributions with lower 
and upper limits a1, b1 and a2, b2 
and the same semi-width 
(b1 − a1 = b2 − a2) 

Triangular: 
T(a, b) with a = a1 + a2, b = b1 + b2 

 

6.4.5 

Sinusoidal cycling between lower 
and upper limits a, b 

Arc sine (U-shaped): 
U(a, b) 

 

6.4.6 

Best estimate x and associated 
standard uncertainty u(x) 

Gaussian: 
N(x, u2(x)) 

 

6.4.7 

Best estimate x of vector quantity 
and associated uncertainty matrix 
Ux 

Multivariate Gaussian: 
N(x, Ux)  6.4.8 

Series of indications x1,…,xn 
sampled independently from a 
quantity having a Gaussian 
distribution, with unknown 
expectation and unknown variance 

Scaled and shifted t : 

( )2
1

1
, with ,

n

n i
i

t x s n x x n−
=

=∑  

( ) ( )22

1
1

n

i
i

s x x n
=

= − −∑   

6.4.9.2 

Best estimate x, expanded 
uncertainty Up, coverage factor kp 
and effective degrees of freedom 
νeff 

Scaled and shifted t : 
tνeff(x, (Up/kp)

2) 

 

6.4.9.7 

Best estimate x of non-negative 
quantity 

Exponential: 
Ex(1/x) 

 

6.4.10 

Number q of objects counted Gamma: 
G(q + 1, 1) 

 

6.4.11 
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6.4.3.3 X has expectation and variance 

2 2( )( ) ( )
2 12 9

a b b a dE X V X+ −= , = +  (4) 

NOTE 1 The variance in Expression (4) is always greater than the variance holding for exact limits in Expression (2), 
i.e. when d = 0. 

NOTE 2 The GUM treats the information about X in 6.4.3.1 by assigning a degrees of freedom to the standard 
uncertainty associated with the best estimate of X [ISO/IEC Guide 98-3:2008, G.4.2]. 

6.4.3.4 To sample from CTrap(a, b, d), make two draws r1 and r2 independently from the standard 
rectangular distribution R(0, 1) (C.3.3), and form 

s 1 s s( ) 2 ( )a a d dr b a b a= − + , = + −  

and 

s s s 2( )a b a rξ = + −  

NOTE as is a draw from the rectangular distribution with limits a ± d. bs is then formed to ensure that the midpoint of as 
and bs is the prescribed value x = (a + b)/2. 

EXAMPLE A certificate states that a voltage X lies in the interval 10.0 V ± 0.1 V. No other information is available 
concerning X, except that it is believed that the magnitude of the interval endpoints is the result of rounding correctly some 
numerical value (3.20). On this basis, that numerical value lies between 0.05 V and 0.15 V, since the numerical value of 
every point in the interval (0.05, 0.15) rounded to one significant decimal digit is 0.1. The location of the interval can 
therefore be regarded as fixed, whereas its width is inexact. The best estimate of X is x = 10.0 V and, using Expression (4) 
based on a = 9.9 V, b = 10.1 V and d = 0.05 V, the associated standard uncertainty u(x) is given by 

2 2
2 (0 2) (0 05)( ) 0 003 6

12 9
u x . .= + = .  

Hence u(x) = (0.003 6)½ = 0.060 V, which can be compared with 0 2 12 0 058. = .  V in the case of exact limits, given by 
replacing d by zero. The use of exact limits in this case gives a numerical value for u(x) that is 4 % smaller than that for 
inexact limits. The relevance of such a difference needs to be considered in the context of the application. 

6.4.4 Trapezoidal distributions 

6.4.4.1 The assignment of a symmetric trapezoidal distribution to a quantity is discussed in the GUM 
[ISO/IEC Guide 98-3:2008, 4.3.9]. Suppose a quantity X is defined as the sum of two independent quantities 
X1 and X2. Suppose, for i = 1 and i = 2, Xi is assigned a rectangular distribution R(ai, bi) with lower limit ai and 
upper limit bi. Then the distribution for X is a symmetric trapezoidal distribution Trap(a, b, β)  with lower limit a, 
upper limit b, and a parameter β equal to the ratio of the semi-width of the top of the trapezoid to that of the 
base. The parameters of this trapezoidal distribution are related to those of the rectangular distributions by 

1
1 2 1 2

2
, ,a a a b b b

λβ
λ

= + = + =  (5) 

where 

1 1 2 2
1 2

( ) ( )
,

2 2
b a b a b aλ λ

− − − −= =  (6) 

and 

1 20 λ λu u  
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6.4.4.2 The PDF for X (Figure 5), obtained using convolution [42, p. 93], is 

2 2
2 2 1 2 1

1 2 1 1
2 2

2 2 1 1 2

( ) ( )
1 ( )( )
( ) ( )
0 otherwise

X

x x x
x xg

x x x

ξ λ λ λ λ ξ λ
λ λ λ ξ λξ
λ ξ λ λ λ ξ λ

⎧ − + − , − < − ,
⎪
⎪ + , − + ,= ⎨

+ − − , + < + ,⎪
⎪ , ,⎩

 u 
 u u 

u 
 (7) 

where x = (a + b)/2. 

NOTE Formula (7) can be expressed as 

( )2
1 2 2 1

1 1( ) min max , 0 , 1Xg xξ λ ξ
λ λ λ λ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+ −⎝ ⎠

 

for computer implementation. 

 

Figure 5 — The trapezoidal PDF for X = X1 + X2, where the PDFs for X1 and X2 are rectangular (6.4.4.2) 

6.4.4.3 X has expectation and variance 

2
2( )( ) , ( ) (1 )

2 24
a b b aE X V X β+ −= = +  

6.4.4.4 To sample from Trap(a, b, β), make two draws r1 and r2 independently from the standard 
rectangular distribution R(0,1) (C.3.3), and form 

1 2(1 ) (1 )
2

b aa r rξ β β−= + + + −⎡ ⎤⎣ ⎦  

6.4.5 Triangular distributions 

6.4.5.1 Suppose a quantity X is defined as the sum of two independent quantities, each assigned a 
rectangular distribution (as in 6.4.4), but with equal semi-widths, i.e. b1 − a1 = b2 − a2. It follows from 
Expressions (5) and (6) that λ1 = 0 and β = 0. The distribution for X is the trapezoidal distribution Trap(a, b, 0), 
which reduces to the (symmetric) triangular distribution T(a, b) over the interval [a, b]. 

6.4.5.2 The PDF for X is 

2

2

( ) , ,

( ) ( ) , ,
0, otherwise,

X

a w a x

g b w x b

ξ ξ

ξ ξ ξ

⎧ −
⎪⎪= − <⎨
⎪
⎪⎩

u u
u  (8) 

where x = (a + b)/2 and w = λ2 = (b − a)/2. 
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NOTE Formula (8) can be expressed as 

22( ) max 1 , 0X
x

g
b a b a

ξ
ξ

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− −⎝ ⎠

 

for computer implementation. 

6.4.5.3 X has expectation and variance 

2( )( ) , ( )
2 24

a b b aE X V X+ −= =  

6.4.5.4 To sample from T(a, b), make two draws r1 and r2 independently from the standard rectangular 
distribution R(0, 1) (C.3.3), and form 

1 2( )
2

b aa r rξ −= + +  

6.4.6 Arc sine (U-shaped) distributions 

6.4.6.1 If a quantity X is known to cycle sinusoidally, with unknown phase Φ, between specified limits a 
and b, with a < b, then, according to the principle of maximum entropy, a rectangular distribution R(0, 2π) 
would be assigned to Φ. The distribution assigned to X is the arc sine distribution U(a, b) [18], given by the 
transformation 

sin
2 2

a b b aX Φ+ −= +  

where Φ has the rectangular distribution R(0, 2π). 

6.4.6.2 The PDF for X is 

2 2 1 2(2 )[( ) (2 ) ] , ,( )
0 otherwise.X

b a a b a bg ξ ξξ
− /⎧ /π − − − − < <= ⎨ ,⎩  

NOTE U(a, b) is related to the standard arc sine distribution U(0, 1) given by 

( ) ( ) 1/ 2
1 , 0 1,

0 otherwise,
Z

z z zg z
−⎧⎡ ⎤− π < <⎪⎣ ⎦= ⎨

⎪⎩
 (9) 

in the variable Z, through the linear transformation 

( )X a b a Z= + −  

Z has expectation 1/2 and variance 1/8. Distribution (9) is termed the arc sine distribution, since the corresponding 
distribution function is 

( ) ( )1 1arcsin 2 1
2zG z z= − +

π
 

It is a special case of the beta distribution with both parameters equal to one half. 
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6.4.6.3 X has expectation and variance 

2( )( ) , ( )
2 8

a b b aE X V X+ −= =  

6.4.6.4 To sample from U(a, b), make a draw r from the standard rectangular distribution R(0, 1) (C.3.3), 
and form 

sin2
2 2

a b b a rξ + −= + π  

6.4.7 Gaussian distributions 

6.4.7.1 If a best estimate x and associated standard uncertainty u(x) are the only information available 
regarding a quantity X, then, according to the principle of maximum entropy, a Gaussian probability 
distribution N(x, u2(x)) would be assigned to X. 

6.4.7.2 The PDF for X is 

2

2
1 ( )( ) exp

2 ( ) 2 ( )
X

xg
u x u x

ξξ
⎛ ⎞−= −⎜ ⎟⎜ ⎟π ⎝ ⎠

 (10) 

6.4.7.3 X has expectation and variance 

2( ) , ( ) ( )E X x V X u x= =  

6.4.7.4 To sample from N(x, u2(x)), make a draw z from the standard Gaussian distribution N(0, 1) 
(Clause C.4), and form 

( )x u x zξ = +  

6.4.8 Multivariate Gaussian distributions 

6.4.8.1 A comparable result to that in 6.4.7.1 holds for an N-dimensional quantity T
1( )NX … X= , ,X . If the 

only information available is a best estimate T
1( )Nx … x= , ,x  of X and the associated (strictly) positive definite 

uncertainty matrix 

2
1 1 2 1

2
2 1 2 2

2
1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

N

N

N N N

u x u x x u x x
u x x u x u x x
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a multivariate Gaussian distribution N(x, Ux) would be assigned to X. 

6.4.8.2 The joint PDF for X is 

1T
1 2

1 1( ) exp ( ) ( )
2[(2 ) det ]N

g −
/

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠π

xX
x

Ux x
U

ξ ξ ξ  (11) 

6.4.8.3 X has expectation and covariance matrix 

( ) , ( )E V= = xX x X U  
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6.4.8.4 To sample from N(x, Ux), make N draws zi, i = 1,…,N, independently from the standard Gaussian 
distribution N(0, 1) (Clause C.4), and form 

T= +x R zξ  

where z = (z1,…,zN)T and R is the upper triangular matrix given by the Cholesky decomposition Ux = RTR 
(Clause C.5). 

NOTE 1 In place of the Cholesky decomposition Ux = RTR, any matrix factorization of this form can be used. 

NOTE 2 The only joint PDFs considered explicitly in this Supplement are multivariate Gaussian, distributions commonly 
used in practice. A numerical procedure for sampling from a multivariate Gaussian PDF is given above (and in 
Clause C.5). If another multivariate PDF is to be used, a means for sampling from it would need to be provided. 

NOTE 3 The multivariate Gaussian PDF (11) reduces to the product of N univariate Gaussian PDFs when there are no 
covariance effects. In that case 

( )2 2
1diag ( ), , ( )Nu x … u x=Ux  

whence 

1
( ) ( )X i

N

i
i

g g ξ
=

= ∏X ξ  

with 

2

2
( )1( ) exp

2 ( ) 2 ( )
X i

i i
i

i i

xg
u x u x

ξξ
⎛ ⎞−
⎜ ⎟= −
⎜ ⎟π ⎝ ⎠

 

6.4.9 t-distributions 

6.4.9.1 t-distributions typically arise in two circumstances: the evaluation of a series of indications 
(6.4.9.2), and the interpretation of calibration certificates (6.4.9.7). 

6.4.9.2 Suppose that a series of n indications x1,…,xn is available, regarded as being obtained 
independently from a quantity with unknown expectation µ0 and unknown variance 2

0σ  having Gaussian-
distribution N ( )2

0 0, .σµ  The desired input quantity X is taken to be equal to µ0. Then, assigning a non-
informative joint prior distribution to µ0 and 2

0σ , and using Bayes’ theorem, the marginal PDF for X is a scaled 
and shifted t-distribution tν ( )2, ,x s n  with ν = n − 1 degrees of freedom, where 

2 2

1 1

1 1, ( )
1

n n

i i
i i

x x s x x
n n= =

= = −
−∑ ∑  

being, respectively, the average and variance of the indications [20]. 

6.4.9.3 The PDF for X is 

( )

22
( 2) 1 1( ) 1

1( 1) 2 ( 1)X

n
n xg

nn n s n s n
ξξ

− /
⎛ ⎞⎛ ⎞Γ / −⎜ ⎟= × + ⎜ ⎟⎜ ⎟⎜ ⎟−Γ − − π ⎝ ⎠⎝ ⎠

 (12) 

where 

1
0

( ) e d , 0z tz t t z− −∞
Γ = >∫  

is the gamma function. 
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6.4.9.4 X has expectation and variance 

21( ) , ( )
3

n sE X x V X
n n

−= =
−

 

where E(X ) is defined only for n > 2 and V(X ) only for n > 3. For n > 3, the best estimate of X and its 
associated standard uncertainty are therefore 

1( )
3

n sx x u x
n n

−= , =
−

 (13) 

NOTE 1 In the GUM [ISO/IEC Guide 98-3:2008, 4.2], the standard uncertainty u(x) associated with the average of a 
series of n indications obtained independently is evaluated as u(x) = s n , rather than from Formula (13), and the 
associated degrees of freedom ν = n − 1 is considered as a measure of the reliability of u(x). By extension, a degrees of 
freedom is associated with an uncertainty obtained from a Type B evaluation, based on subjective judgement of the 
reliability of the evaluation [ISO/IEC Guide 98-3:2008, G.4.2] (cf. 6.4.3.3 Note 2). Degrees of freedom associated with the 
uncertainties u(xi) are necessary to obtain, by application of the Welch-Satterthwaite formula, the effective degrees of 
freedom νeff associated with the uncertainty u(y). 

NOTE 2 In the Bayesian context of this Supplement, concepts such as the reliability, or the uncertainty, of an 
uncertainty are not necessary. Accordingly, the degrees of freedom in a Type A evaluation of uncertainty are no longer 
viewed as a measure of reliability, and the degrees of freedom in a Type B evaluation do not exist. 

6.4.9.5 To sample from tν ( )2, ,x s n  make a draw t from the central t-distribution tν with ν = n − 1 degrees 
of freedom ([ISO/IEC Guide 98-3:2008, G.3], Clause C.6), and form 

sx t
n

ξ = +  

6.4.9.6 If instead of a standard deviation s calculated from a single series of indications, a pooled 
standard deviation sp with νp degrees of freedom obtained from Q such sets, 

2 2
p p

p 1 1

1 ,
Q Q

j j j
j j

s sν ν ν
ν = =

= =∑ ∑  

is used, the degrees of freedom ν = n − 1 of the scaled and shifted t-distribution assigned to X should be 
replaced by the degrees of freedom νp associated with the pooled standard deviation sp. As a consequence, 
Formula (12) should be replaced by 

( )
p( 1) 22

p

pp p p p

( 1) 2 1 1( ) 1
( 2)X

xg
s n s n

ν
ν ξξ

νν ν

− + /
⎛ ⎞⎛ ⎞Γ + −⎜ ⎟⎜ ⎟= × +⎜ ⎟⎜ ⎟Γ π ⎜ ⎟⎝ ⎠⎝ ⎠

 

and Expressions (13) by 

p p
p

p1

1 , ( ) ( 3)
2

n

i
i

s
x x x u x

n n

ν
ν

ν=
= = =

−∑ W  

6.4.9.7 If the source of information about a quantity X is a calibration certificate 
[ISO/IEC Guide 98-3:2008, 4.3.1] in which a best estimate x, the expanded uncertainty Up, the coverage factor 
kp and the effective degrees of freedom νeff are stated, then a scaled and shifted t-distribution tν (x, (Up/kp)2) 
with ν = νeff degrees of freedom should be assigned to X. 

6.4.9.8 If νeff is stated as infinite or not specified, in which case it would be taken as infinite in the 
absence of other information, a Gaussian distribution N(x, (Up/kp)2) would be assigned to X (6.4.7.1). 

NOTE This distribution is the limiting case of the scaled and shifted t-distribution tν (x, (Up/kp)
2) as ν  tends to infinity. 
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6.4.10 Exponential distributions 

6.4.10.1 If the only available information regarding a non-negative quantity X is a best estimate x > 0 of X, 
then, according to the principle of maximum entropy, an exponential distribution Ex(1/x) would be assigned 
to X. 

6.4.10.2 The PDF for X is 

exp( ) , 0,( ) 0, otherwiseX
x xg ξ ξξ −⎧= ⎨ .⎩

W  

6.4.10.3 X has expectation and variance 

2( ) , ( )E X x V X x= =  

6.4.10.4 To sample from Ex(1/x), make a draw r from the standard rectangular distribution R(0,1) (C.3.3), 
and form 

lnx rξ = −  

NOTE Further information regarding the assignment of PDFs to non-negative quantities is available [14]. 

6.4.11 Gamma distributions 

6.4.11.1 Suppose the quantity X is the average number of objects present in a sample of a fixed size (e.g. 
the average number of particles in an air sample taken from a clean room, or the average number of photons 
emitted by a source in a specified time interval). Suppose q is the number of objects counted in a sample of 
the specified size, and the counted number is assumed to be a quantity with unknown expectation having a 
Poisson distribution. Then, according to Bayes’ theorem, after assigning a constant prior distribution to the 
expectation, a gamma distribution G(q + 1, 1) would be assigned to X. 

6.4.11.2 The PDF for X is 

exp( ) , 0,( )
0, otherwise.X

q qg ξ ξ ξξ ⎧ − != ⎨
⎩

W  (14) 

6.4.11.3 X has expectation and variance 

( ) 1 ( ) 1E X q V X q= + , = +  (15) 

6.4.11.4 To sample from G(q + 1, 1), make q + 1 draws ri, i = 1,…, q + 1, independently from the standard 
rectangular distribution R(0,1) (C.3.3), and form 

1

1
ln

q

i
i

rξ
+

=
= − ∏  

See also Reference [18]. 

NOTE 1 If the counting is performed over several samples (according to the same Poisson distribution), and qi is the 
number of objects counted in the i th sample, of size Si, then the distribution for the average number of objects in a sample 
of size 

i
iS S= ∑  is G(α, β) with α = 1 + 

i
iq∑  and β = 1. Formulae (14) and (15) apply with .

i
iq q= ∑  

NOTE 2 The gamma distribution is a generalization of the chi-squared distribution and is used to characterize 
information associated with variances. 

NOTE 3 The particular gamma distribution in 6.4.11.4 is an Erlang distribution given by the sum of q + 1 exponential 
distributions with parameter 1 [18]. 
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6.5 Probability distributions from previous uncertainty calculations 

A previous uncertainty calculation may have provided a probability distribution for an output quantity that is to 
become an input quantity for a further uncertainty calculation. This probability distribution may be available 
analytically in a recognized form, e.g. as a Gaussian PDF. It may be available as an approximation to the 
distribution function for a quantity obtained from a previous application of MCM, for example. Means for 
describing such a distribution function for a quantity is given in 7.5.1 and D.2. 

7 Implementation of a Monte Carlo method 

7.1 General 

This clause gives information about the implementation of a Monte Carlo method for the propagation of 
distributions: see the procedure given in 5.9.6 and shown diagrammatically in Figure 4. 

7.2 Number of Monte Carlo trials 

7.2.1 A value of M, the number of Monte Carlo trials, i.e. the number of model evaluations to be made, 
needs to be selected. It can be chosen a priori, in which case there will be no direct control over the quality of 
the numerical results provided by MCM. The reason is that the number of trials needed to provide these 
results to a prescribed numerical tolerance will depend on the “shape” of the PDF for the output quantity and 
on the coverage probability required. Also, the calculations are stochastic in nature, being based on random 
sampling. 

NOTE A value of M = 106 can often be expected to deliver a 95 % coverage interval for the output quantity such that 
this length is correct to one or two significant decimal digits. 

7.2.2 The choice of a value of M that is large compared with 1/(1 − p), e.g. M at least 104 times greater than 
1/(1 − p), should be made. It can then be expected that G will provide a reasonable discrete representation of 
GY (η) in the regions near the endpoints of a 100p % coverage interval for Y. 

7.2.3 Because there is no guarantee that this or any specific pre-assigned number will suffice, a procedure 
that selects M adaptively, i.e. as the trials progress, can be used. Some guidance in this regard is 
available [2]. Subclause 7.9 provides such a procedure, a property of which is that the number of trials taken 
is economically consistent with the expectation of achieving a required numerical tolerance. 

NOTE If the model is complicated, e.g. involving the solution of a finite-element model, because of large computing 
times it may not be possible to use a sufficiently large value of M to obtain adequate distributional knowledge of the output 
quantity. In such a case an approximate approach would be to regard gY (η) as Gaussian (as in the GUM) and proceed as 
follows. A relatively small value of M, 50 or 100, for example, would be used. The average and standard deviation of the 
resulting M model values of Y would be taken as y and u(y), respectively. Given this information, a Gaussian PDF 
gY (η) = N(y, u2(y)) would be assigned to characterize the knowledge of Y (see 6.4.7) and a desired coverage interval for Y 
calculated. Although this use of a small value of M is inevitably less reliable than that of a large value in that it does not 
provide an approximation to the PDF for Y, it does take account of model non-linearity. 

7.3 Sampling from probability distributions 

In an implementation of MCM, M vectors xr, r = 1,…,M (7.2), are drawn from the PDFs gXi
(ξi) for the N input 

quantities Xi. Draws would be made from the joint (multivariate) PDF gX(ξ) if appropriate. Recommendations 
concerning the manner in which this sampling can be carried out are given in Annex C for the commonest 
distributions, viz. the rectangular, Gaussian, t, and multivariate Gaussian. Also see 6.4. It is possible to draw 
at random from any other distribution. See Clause C.2. Some such distributions could be approximations to 
distributions based on Monte Carlo results from a previous uncertainty calculation (6.5 and 7.5 and Annex D). 

NOTE For the results of MCM to be statistically valid, it is necessary that the pseudo-random number generators 
used to draw from the distributions required have appropriate properties. Some tests of randomness of the numbers 
produced by a generator are indicated in C.3.2. 



ISO/IEC GUIDE 98-3/Suppl.1:2008(E) 

 

30  © ISO/IEC 2008 – All rights reserved
 

7.4 Evaluation of the model 

7.4.1 The model is evaluated for each of the M draws from the PDFs for the N input quantities. Specifically, 
denote the M draws by x1,…, xM, where the rth draw xr contains x1,r,…, xN,r, with xi,r a draw from the PDF for 
Xi. Then, the model values are 

( ), 1,…,r ry f r M= =x  

7.4.2 The necessary modifications are made to 7.4.1 if the Xi are not independent and hence a joint PDF is 
assigned to them. 

NOTE Model and derivative evaluations are made when applying the law of propagation of uncertainty, using exact 
derivatives, at the best estimates of the input quantities. Model evaluations only are made when applying the law of 
propagation of uncertainty when numerical (finite-difference) approximations to derivatives are used. These evaluations 
are made, if the GUM recommendation [ISO/IEC Guide 98-3:2008, 5.1.3 Note 2] is adopted, at the best estimates of the 
input quantities and at points perturbed by ± one standard uncertainty from each estimate in turn. With MCM, model 
evaluations are made in the neighbourhood of these best estimates, viz. at points that can be expected to be up to several 
standard uncertainties away from these estimates. The fact that model evaluations are made at different points, according 
to the approach used, may raise issues regarding the numerical procedure used to evaluate the model, e.g. ensuring its 
convergence (where iterative schemes are used) and numerical stability. The user should ensure that, where appropriate, 
the numerical methods used to evaluate f are valid for a sufficiently large region containing these best estimates. Only 
occasionally would it be expected that this aspect is critical. 

7.5 Discrete representation of the distribution function for the output quantity 

7.5.1 A discrete representation G of the distribution function GY (η) for the output quantity Y can be obtained 
as follows: 

a) sort the model values yr, r = 1,…, M, provided by MCM into non-decreasing order. Denote the sorted 
model values by y(r), r = 1,…, M; 

b) if necessary, make minute numerical perturbations to any replicate model values y(r) in such a way that 
the resulting complete set of y(r), r = 1,…, M, form a strictly increasing sequence (cf. condition b) 
in 5.10.1); 

c) take G as the set y(r), r = 1,…, M. 

NOTE 1 With reference to step a), a sorting algorithm taking a number of operations proportional to M lnM should be 
used [47]. A naive algorithm would take a time proportional to M 

2, making the computation time unnecessarily long. 
See 7.8. 

NOTE 2 In step a), the term “non-decreasing” rather than “increasing” is used because of possible equalities among 
the model values yr. 

NOTE 3 With reference to step b), making only minute perturbations will ensure that the statistical properties of the y(r) 
are retained. 

NOTE 4 In step b), it is exceedingly unlikely that perturbations are necessary, because of the very large number of 
distinct floating-point numbers that can arise from model values generated from input quantities obtained as draws from 
random number generators. A sound software implementation would make appropriate provision, however. 

NOTE 5 With reference to step c), a variety of information can be deduced from G. In particular, information 
supplementary to the expectation and standard deviation can be provided, such as measures of skewness and kurtosis, 
and other statistics such as the mode and the median. 

NOTE 6 If Y is to become an input quantity for a further uncertainty calculation, sampling from its probability distribution 
is readily carried out by drawing randomly from the y(r), r = 1,…, M, with equal probability (see 6.5). 
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7.5.2 The y(r) (or yr), when assembled into a histogram (with suitable cell widths) form a frequency 
distribution that, when normalized to have unit area, provides an approximation to the PDF gY (η) for Y. 
Calculations are not generally carried out in terms of this histogram, the resolution of which depends on the 
choice of cell widths, but in terms of G. The histogram can, however, be useful as an aid to understanding the 
nature of the PDF, e.g. the extent of its asymmetry. See, however, 7.8.3 Note 1 regarding the use of a large 
numerical value of M. 

7.5.3 A continuous approximation to GY (η) is sometimes useful. Annex D contains a means for obtaining 
such an approximation. 

7.6 Estimate of the output quantity and the associated standard uncertainty 

The average 

~y 
1

1 M

r
r

y
M =

= ∑  (16) 

and standard deviation u(~y) determined from 

u2(~y) 
1

1
1

M

rM =
=

− ∑ (yr – ~y)2 (17) 

are taken, respectively, as an estimate y of Y and the standard uncertainty u(y) associated with y. 

NOTE 1 Formula (17) should be used rather than the mathematically equivalent formula 

u2(~y) 2

1

1
1

M

r
r

M y y
M M =

⎛
⎜= −
⎜− ⎝

∑ ~y2
⎞
⎟
⎟
⎠

 

For the many circumstances in metrology in which u(y) is much smaller than ⎜y⎟ (in which case the yr have a number of 
leading decimal digits in common) the latter formula suffers numerically from subtractive cancellation (involving a mean 
square less a squared mean). This effect can be so severe that the resulting numerical value might have too few correct 
significant decimal digits for the uncertainty evaluation to be valid [4]. 

NOTE 2 In some special circumstances, such as when one of the input quantities has been assigned a PDF based on 
the t-distribution with fewer than three degrees of freedom, the expectation and standard deviation of Y, as described by 
the PDF gY (η), might not exist. Formulae (16) and (17) might not then provide meaningful results. A coverage interval for Y 
(7.7) can, however, be formed, since G is meaningful and can be determined. 

NOTE 3 ~y will not in general agree with the model evaluated at the best estimates of the input quantities, since, for a 
non-linear model f (X), E(Y) = E [ f (X)] ≠ f  [E(X)] (cf. [ISO/IEC Guide 98-3:2008, 4.1.4]). Irrespective of whether f is linear or 
non-linear, in the limit as M tends to infinity, ~y approaches E [ f (X)] when E [ f (X)] exists. 

7.7 Coverage interval for the output quantity 

7.7.1 A coverage interval for Y can be determined from the discrete representation G of GY (η) in an 
analogous manner to that in 5.3.2 given GY (η). 

7.7.2 Let q = pM, if pM is an integer. Otherwise, take q to be the integer part of pM + 1/2. Then [ylow, yhigh] is 
a 100p % coverage interval for Y, where, for any r = 1,…, M − q, ylow = y(r) and yhigh = y(r + q). The 
probabilistically symmetric 100p % coverage interval is given by taking r = (M − q)/2, if (M − q)/2 is an integer, 
or the integer part of (M − q + 1)/2, otherwise. The shortest 100p % coverage interval is given by determining 
r* such that, for r = 1,…, M − q, y(r* + q) − y(r*) u y(r + q) − y(r). 
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NOTE Because of the randomness in MCM, some of these M − q interval lengths will be shorter than they would be 
on average, and some longer. So, by choosing the least such length, the (approximation to the) shortest 100p % coverage 
interval tends to be marginally shorter than that which would have been calculated from GY (η), with the consequence that 
the typical coverage probability is less than 100p %. For large M, this coverage probability is negligibly less than 100p %. 

EXAMPLE 105 numbers were drawn from a pseudo-random number generator for the rectangular distribution in the 
interval [0, 1], and the shortest 95 % coverage interval formed as above. This exercise was carried out 1 000 times. The 
average coverage probability was 94.92 % and the standard deviation of the 1 000 coverage probabilities 0.06 %. 

7.8 Computation time 

7.8.1 The computation time for MCM is dominated by the time required for the following three steps: 

a) make M draws from the PDF for each input quantity Xi (or the joint PDF for X); 

b) make M corresponding evaluations of the model; 

c) sort the resulting M model values into non-decreasing order. 

7.8.2 The times taken in the three steps are directly proportional to a) M, b) M, and c) M lnM (if an efficient 
sort algorithm [47] is used). 

7.8.3 If the model is simple and the input quantities are independent, the time in step c) can be expected to 
dominate, and the overall time taken is typically a few seconds for M = 106 on a personal computer operating 
at several GHz. Otherwise, let T1 be the time taken to make one draw from the PDFs for the input quantities 
and T2 that to make one evaluation of the model. Then, the overall time can be taken as essentially 
M × (T1 + T2), which, if the model is complicated, is dominated by the term MT2. 

NOTE 1 If the model is simple and M very large, e.g. 108 or 109, the sorting time may be excessive compared with the 
time taken to make the M model evaluations. In such a case, calculations can instead be based on an approximation to 
gY (η) derived from a suitable histogram of the yr. 

NOTE 2 An indication of the computation time required for an application of MCM can be obtained as follows. Consider 
an artificial problem with a model consisting of the sum of five terms: 

1 1 3
1 2 3 4 5cos sin tan exp( )Y X X X X X− /= + + + +  

Assign a Gaussian PDF to each input quantity Xi. Make M = 106 Monte Carlo trials. The relative computation times for 

a) generating 5M random Gaussian numbers, 

b) forming M model values, and 

c) sorting the M model values 

were respectively 20 %, 20 % and 60 %, with a total computation time of a few seconds on a personal computer operating 
at several GHz. 

7.9 Adaptive Monte Carlo procedure 

7.9.1 General 

A basic implementation of an adaptive Monte Carlo procedure involves carrying out an increasing number of 
Monte Carlo trials until the various results of interest have stabilized in a statistical sense. A numerical result is 
deemed to have stabilized if twice the standard deviation associated with it is less than the numerical 
tolerance (7.9.2) associated with the standard uncertainty u(y). 

7.9.2 Numerical tolerance associated with a numerical value 

Let ndig denote the number of significant decimal digits regarded as meaningful in a numerical value z. The 
numerical tolerance δ  associated with z is given as follows: 
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a) express z in the form c × 10ℓ, where c is an ndig decimal digit integer and ℓ an integer; 

b) take 

110
2

δ = l  (18) 

EXAMPLE 1 The estimate of the output quantity for a nominally 100 g measurement standard of mass 
[ISO/IEC Guide 98-3:2008, 7.2.2] is y = 100.021 47 g. The standard uncertainty u(y) = 0.000 35 g, both significant digits 
being regarded as meaningful. Thus, ndig = 2 and u(y) can be expressed as 35 × 10−5 g, and so c = 35 and ℓ = −5. Take 
δ = 1

2 × 10−5 g = 0.000 005 g. 

EXAMPLE 2 As Example 1 except that only one significant decimal digit in u(y) is regarded as meaningful. Thus, 
ndig = 1 and u(y) = 0.000 4 g = 4 × 10−4 g, giving c = 4 and ℓ = −4. Hence, δ = 1

2 × 10−4 g = 0.000 05 g. 

EXAMPLE 3 In a temperature measurement, u(y) = 2 K. Then, ndig = 1 and u(y) = 2 × 100 K, giving c = 2 and ℓ = 0. 
Thus, δ = 1

2 × 100 K = 0.5 K. 

7.9.3 Objective of adaptive procedure 

The objective of the adaptive procedure given in 7.9.4 is to provide 

a) an estimate y of Y, 

b) an associated standard uncertainty u(y), and 

c) the endpoints ylow and yhigh of a coverage interval for Y corresponding to a stipulated coverage probability 

such that each of these four values can be expected to meet the numerical tolerance required. 

NOTE 1 By its stochastic nature, the procedure cannot be guaranteed to provide such an interval. 

NOTE 2 y and u(y) generally “converge” considerably faster than ylow and yhigh with respect to the number of Monte 
Carlo trials. 

NOTE 3 Generally, the larger is the coverage probability, the larger is the number of Monte Carlo trials required to 
determine ylow and yhigh for a given numerical tolerance. 

7.9.4 Adaptive procedure 

A practical approach, involving carrying out a sequence of applications of MCM, is as follows: 

a) set ndig to an appropriate small positive integer (7.9.2); 

b) set 

4max( ,10 )M J=  

where J is the smallest integer greater than or equal to 100/(1 − p); 

c) set h = 1, denoting the first application of MCM in the sequence; 

d) carry out M Monte Carlo trials, as in 7.3 and 7.4; 

e) use the M model values y1,…, yM so obtained to calculate, as in 7.5 to 7.7, y(h), u(y(h)), ( )
low
hy  and ( )

high
hy  as 

an estimate of Y, the associated standard uncertainty, and the left- and right-hand endpoints of a 100p % 
coverage interval, respectively, i.e. for the hth member of the sequence; 

f) if h = 1, increase h by one and return to step d); 
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g) calculate the standard deviation sy associated with the average of the estimates y(1),…, y(h) of Y, given by 

2 ( ) 2

1

1 ( )
( 1)

h
r

y
r

s y y
h h =

= −
− ∑  

where 

( )

1

1 h
r

r
y y

h =
= ∑  

h) calculate the counterpart of this statistic for u(y), ylow and yhigh; 

i) use all h × M model values available so far to form u(y); 

j) calculate the numerical tolerance δ  associated with u(y) as in 7.9.2; 

k) if any of 2sy, 2su(y), 2sylow
 and 2syhigh

 exceeds δ, increase h by one and return to step d); 

l) regard the overall computation as having stabilized, and use all h × M model values obtained to calculate 
y, u(y) and a 100p % coverage interval, as in 7.5 to 7.7. 

NOTE 1 Normally ndig in step a) would be chosen to be 1 or 2. 

NOTE 2 The choice of M in step b) is arbitrary, but has been found suitable in practice. 

NOTE 3 In step g), y can be regarded as a realization of a random variable with standard deviation sy. 

NOTE 4 The standard deviations formed in steps g) and h) tend to reduce in a manner proportional to h − 1
2  

[cf. 5.9.6 Note 2]. 

NOTE 5 In situations where a coverage interval is not required, the test for stabilization of the computation in step k) 
can be based instead on 2sy and 2su(y) only. 

NOTE 6 The factor 2 used in step k) is based on regarding the averages as realizations of Gaussian variables, and 
corresponds to a coverage probability of approximately 95 %. 

NOTE 7 An alternative, non-adaptive approach for a 95 % probabilistically symmetric coverage interval, which can be 
obtained using the statistics of the binomial distribution [10], is as follows. Select M = 105 or M = 106. Form the interval 
[y(r), y(s)], where, for M = 105, r = 2 420 and s = 97 581, or, for M = 106, r = 24 747 and s = 975 254. This interval is a 95 % 
statistical coverage interval at the level of confidence 0.99 [ISO/IEC Guide 98-3:2008, C.2.30] [55], i.e. the coverage 
probability will be no less than 95 % in at least 99 % of uses of MCM. This result can be established using the statistics of 
the binomial distribution [10]. The average coverage probability of such an interval will be (s − r)/(M + 1), which is greater 
than 95 % by an amount that becomes smaller as M is increased, viz. 95.16 % for M = 105 and 95.05 % for M = 106. 
(There are other possibilities for r and s; they do not have to sum to M + 1. A sufficient condition [10, section 2.6] is that 
s − r satisfies 

(1 ) 1 0 99
M

M j M j
j

j s r
C p p −

= −
− < − .∑  

where 

( )
M

j
MC

j M j
!=

! − !
 

the best result being when this inequality is just satisfied.) These results can be extended to other coverage probabilities 
(and other choices of M). 
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8 Validation of results 

8.1 Validation of the GUM uncertainty framework using a Monte Carlo method 

8.1.1 The GUM uncertainty framework can be expected to work well in many circumstances. However, it is 
not always straightforward to determine whether all the conditions for its application (5.7 and 5.8) hold. 
Indeed, the degree of difficulty of doing so would typically be considerably greater than that required to apply 
MCM, assuming suitable software were available [8]. Therefore, since these circumstances cannot readily be 
tested, any cases of doubt should be validated. Since the domain of validity for MCM is broader than that for 
the GUM uncertainty framework, it is recommended that both the GUM uncertainty framework and MCM be 
applied and the results compared. Should the comparison be favourable, the GUM uncertainty framework 
could be used on this occasion and for sufficiently similar problems in the future. Otherwise, consideration 
should be given to using MCM or another appropriate approach instead. 

8.1.2 Specifically, it is recommended that the two steps below and the following comparison process be 
carried out: 

a) apply the GUM uncertainty framework (possibly with the law of propagation of uncertainty based on a 
higher-order Taylor series approximation) (5.6) to yield a 100p % coverage interval y ± Up for the output 
quantity, where p is the stipulated coverage probability; 

b) apply the adaptive Monte Carlo procedure (7.9.4) to provide (approximations to) the standard uncertainty 
u(y) and the endpoints ylow and yhigh of the required (probabilistically symmetric or shortest) 100p % 
coverage interval for the output quantity. Also see 8.2. 

8.1.3 A comparison procedure has the following objective: determine whether the coverage intervals 
obtained by the GUM uncertainty framework and MCM agree to within a stipulated numerical tolerance. This 
numerical tolerance is assessed in terms of the endpoints of the coverage intervals and corresponds to that 
given by expressing the standard uncertainty u(y) to what is regarded as a meaningful number of significant 
decimal digits (cf. 7.9.2). The procedure is as follows: 

a) form a numerical tolerance δ  associated with u(y) as described in 7.9.2; 

b) compare the coverage intervals obtained by the GUM uncertainty framework and MCM to determine 
whether the required number of correct decimal digits in the coverage interval provided by the GUM 
uncertainty framework has been obtained. Specifically, determine 

low lowpd y U y⏐ ⏐= − −  (19) 

high highpd y U y⏐ ⏐= + −  (20) 

viz. the absolute differences of the respective endpoints of the two coverage intervals. Then, if both dlow 
and dhigh are no larger than δ, the comparison is favourable and the GUM uncertainty framework has 
been validated in this instance. 

NOTE The choice of 100p % coverage interval will influence the comparison. Therefore, the validation applies for the 
specified coverage probability p only. 

8.2 Obtaining results from a Monte Carlo method for validation purposes 

A sufficient number M of Monte Carlo trials (7.2) should be performed in obtaining MCM results for the 
validation purposes of 8.1. Let ndig denote the number of significant decimal digits required in u(y) (7.9.1) when 
validating the GUM uncertainty framework using MCM. Let δ denote the numerical tolerance associated with 
u(y) (7.9.2). Then it is recommended that the adaptive Monte Carlo procedure (7.9.4) be used to provide MCM 
results to a numerical tolerance of δ /5. Such results can be obtained by replacing δ  by δ /5 in step k) of that 
procedure. 
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NOTE It can be expected that the use of a numerical tolerance of δ /5 would require a value of M of the order of 25 
times that for a numerical tolerance of δ. Such a value of M might present efficiency problems for some computers in 
operating with vector arrays of dimension M. In such a case, calculations can instead be based on an approximation to 
gY (η) derived from a suitable histogram of the yr, in which the cell frequencies in the histogram are updated as the Monte 
Carlo calculation proceeds. Cf. 7.8.3 Note 1. 

9 Examples 

9.1 Illustrations of aspects of this Supplement 

9.1.1 The examples given illustrate various aspects of this Supplement. They show the application of the 
GUM uncertainty framework with and without contributions derived from higher-order terms in the Taylor 
series approximation of the model function. They also show the corresponding results provided by 

a) MCM using pre-assigned numbers M of Monte Carlo trials, 

b) the adaptive Monte Carlo procedure (7.9.4) in which M is determined automatically, or 

c) both. 

9.1.2 Some of the examples further show whether the MCM results provided in (b) in 9.1.1 validate those 
provided by the GUM uncertainty framework. A numerical tolerance δ (7.9.2) associated with u(y), with δ 
chosen appropriately, is used in comparing MCM and the GUM uncertainty framework. The Monte Carlo 
results provided in (b) were obtained using a numerical tolerance of δ /5 (8.2). In some instances, solutions are 
obtained analytically for further comparison. 

9.1.3 Results are generally reported in the manner described in 5.5. However, more than the recommended 
one or two significant decimal digits are often given to facilitate comparison of the results obtained from the 
various approaches. 

9.1.4 The Mersenne Twister generator [34] was used to generate pseudo-random numbers from a 
rectangular distribution (Clause C.3). It passes a comprehensive test for pseudo-random numbers drawn from 
a rectangular distribution [30] (C.3.2) and is available within MATLAB1) [36], the programming environment 
used to produce the results given here. 

9.1.5 The first example (9.2) constitutes an additive model. It demonstrates that the results from MCM 
agree with those from the application of the GUM uncertainty framework when the conditions hold for the latter 
(as in 5.7). The same model, but with different PDFs assigned to the input quantities, is also considered to 
demonstrate some departures when not all the conditions hold. 

9.1.6 The second example (9.3) is a calibration problem from mass metrology. It demonstrates that the 
GUM uncertainty framework is valid in this instance only if the contributions derived from higher-order terms in 
the Taylor series approximation of the model function are included. 

9.1.7 The third example (9.4) is concerned with electrical measurement. It shows that the PDF for the 
output quantity can be markedly asymmetric, and thus the GUM uncertainty framework can yield invalid 
results, even if all higher-order terms are taken into account. Instances where the input quantities are 
independent and not independent are treated. 

9.1.8 The fourth example (9.5) is that in the GUM concerned with gauge block calibration 
[ISO/IEC Guide 98-3:2008, H.1]. The information given there concerning the model input quantities is 
interpreted, PDFs accordingly assigned to these quantities, and results from the GUM uncertainty framework 
and MCM obtained and compared. Moreover, this treatment is applied both to the original model and the 
approximation made to it in the GUM. 

                                                      

1) MATLAB is an example of a suitable product available commercially. This information is given for the convenience of 
users of this document and does not constitute an endorsement by ISO or IEC of this product. 
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9.2 Additive model 

9.2.1 Formulation 

This example considers the additive model 

1 2 3 4Y X X X X= + + +  (21) 

a special case of the generic linear model considered in the GUM, for three different sets of PDFs gXi
(ξi) 

assigned to the input quantities Xi, regarded as independent. The Xi and hence the output quantity Y have 
dimension 1. For the first set, each gXi

(ξi) is a standard Gaussian PDF (with Xi having expectation zero and 
standard deviation unity). For the second set, each gXi

(ξi) is a rectangular PDF, also with Xi having 
expectation zero and standard deviation unity. The third set is identical to the second except that the PDF for 
gX4

(ξ4) has a standard deviation of ten. 

NOTE Further information concerning additive models, such as the Model (21), where the PDFs are Gaussian or 
rectangular or a combination of both, is available [13]. 

9.2.2 Normally distributed input quantities 

9.2.2.1 Assign a standard Gaussian PDF to each Xi. The best estimates of the Xi are xi = 0, i = 1, 2, 3, 4, 
with associated standard uncertainties u(xi) = 1. 

9.2.2.2 The results obtained are summarized in the first five columns of Table 2, with the results reported 
to three significant figures in order to facilitate their comparison (9.1.3). 

NOTE The probabilistically symmetric 95 % coverage interval is determined, because the PDF for Y is known to be 
symmetric in this case, as it is for the other cases considered in this example. 

9.2.2.3 The law of propagation of uncertainty [ISO/IEC Guide 98-3:2008, 5.1.2] gives the estimate y = 0.0 
of Y and associated standard uncertainty u(y) = 2.0, using a numerical tolerance of two significant decimal 
digits for u(y) (δ = 0.05) (5.5). A probabilistically symmetric 95 % coverage interval for Y, based on a coverage 
factor of 1.96, is [−3.9, 3.9]. 

9.2.2.4 The application of MCM (Clause 7) with M = 105 trials gives y = 0.0, u(y) = 2.0 and the 
probabilistically symmetric 95 % coverage interval [−3.9, 3.9]. Two further applications of the method, with 
M = 106 trials, agree with these results to within the numerical tolerance used. These two further applications 
(different random samplings being made from the PDFs) were made to demonstrate the variation in the 
results obtained. The fourth and fifth numerical values of M (1.23 × 106 and 1.02 × 106) are the numbers of 
trials for two applications of the adaptive Monte Carlo procedure (7.9) with the use of a numerical tolerance of 
δ /5 (8.2). 

9.2.2.5 The PDF for Y obtained analytically is the Gaussian PDF with expectation zero and standard 
deviation two. 

9.2.2.6 Figure 6 shows the (Gaussian) PDF for Y resulting from the GUM uncertainty framework. It also 
shows one of the approximations [scaled frequency distribution (histogram) of M = 106 model values of Y ] 
constituting the discrete representation G (7.5) to this PDF provided by MCM. The endpoints of the 
probabilistically symmetric 95 % coverage interval provided by both methods are shown as vertical lines. The 
PDF and the approximation are visually indistinguishable, as are the respective coverage intervals. For this 
example, such agreement would be expected (for a sufficiently large value of M), because all the conditions 
hold for the application of the GUM uncertainty framework (5.7). 
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Key 

X Output quantity/unit 
Y Probability density/unit−1 
“Unit” denotes any unit. 

Figure 6 — Approximations for the Model (21), with each Xi assigned a standard Gaussian PDF, to the 
PDF for Y provided by a) the GUM uncertainty framework and b) MCM (9.2.2.6 and 9.2.3.3) 

9.2.2.7 Columns 6 to 8 of Table 2 also show the results of applying the validation procedures of 8.1 and 
8.2. Using the terminology of 7.9.2, ndig = 2, since two significant decimal digits in u(y) are sought. Hence, 
u(y) = 2.0 = 20 × 10−1, and so c = 20 and ℓ = −1. Thus, according to 7.9.2, the numerical tolerance is 

11 10 0.05
2

δ −= × =  

The magnitudes dlow and dhigh of the endpoint differences [Expressions (19) and (20)] are shown in Table 2 
for the two applications of the adaptive Monte Carlo procedure. Also shown is whether the GUM uncertainty 
framework has been validated for δ = 0.05. 

Table 2 — The application to the Model (21), with each Xi assigned a standard Gaussian PDF, of a) the 
GUM uncertainty framework (GUF), b) MCM, and c) an analytical approach (9.2.2.2, 9.2.2.7 and 9.2.3.4) 

Method M y u(y) Probabilistically symmetric
95 % coverage interval 

dlow dhigh GUF validated 
(δ = 0.05)? 

GUF  0.00 2.00 [−3.92, 3.92]    

MCM 105 0.00 2.00 [−3.94, 3.92]    

MCM 106 0.00 2.00 [−3.92, 3.92]    

MCM 106 0.00 2.00 [−3.92, 3.92]    

Adaptive MCM 1.23 × 106 0.00 2.00 [−3.92, 3.93] 0.00 0.01 Yes 

Adaptive MCM 1.02 × 106 0.00 2.00 [−3.92, 3.92] 0.00 0.00 Yes 

Analytical  0.00 2.00 [−3.92, 3.92]    
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9.2.2.8 Figure 7 shows the length yhigh − ylow of the 95 % coverage interval for Y (7.7), as a function of 
the probability at its left-hand endpoint, determined from G. As expected for a symmetric PDF, the interval 
takes its shortest length when symmetrically located with respect to the expectation. 

 

Key 

X Left-hand probability 
Y Length of coverage interval/unit 

Figure 7 — The length of the 95 % coverage interval, as a function of the probability at its left-hand 
endpoint, for the discrete representation G of the distribution function obtained by applying MCM to 

the Model (21) (9.2.2.8 and 9.4.2.2.11) 

 

9.2.2.9 Subclause 9.4 provides an example of an asymmetric PDF for which the shortest coverage 
interval differs appreciably from the probabilistically symmetric coverage interval. 

9.2.3 Rectangularly distributed input quantities with the same width 

9.2.3.1 Assign a rectangular PDF to each Xi, so that Xi has an expectation of zero and a standard 
deviation of unity (in contrast to 9.2.2.1 where a Gaussian PDF is assigned). Again, the best estimates of the 
Xi are xi = 0, i = 1, 2, 3, 4, with associated standard uncertainties u(xi) = 1. 

9.2.3.2 By following the analogous steps of 9.2.2.3 to 9.2.2.5, the results in Table 3 were obtained. The 
analytic solution for the endpoints of the probabilistically symmetric 95 % coverage interval, viz. 

( )1/ 42 3 2 3 5 3.88,⎡ ⎤± − ≈ ±⎢ ⎥⎣ ⎦
 was obtained as described in Annex E. 

9.2.3.3 Figure 8 shows the counterpart of Figure 6 in this case. By comparison with Figure 6, some 
modest differences between the approximations to the PDFs can be seen. The GUM uncertainty framework 
provides exactly the same PDF for Y when the PDFs for the Xi are Gaussian or rectangular, because the 
expectations of these quantities are identical, as are the standard deviations, in the two cases. The PDF 
provided by MCM takes smaller values than those provided by the GUM uncertainty framework in the 
neighbourhood of the expectation and to a smaller extent towards the tails. It takes slightly greater values in 
the flanks. The endpoints of the coverage intervals provided are again almost visually indistinguishable, but 
Table 3 shows small differences. 
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9.2.3.4 The probabilistically symmetric 95 % coverage interval determined on the basis of the GUM 
uncertainty framework is in this case slightly more conservative than that obtained analytically. As for normally 
distributed quantities, the validation procedure was applied (columns 6 to 8 of Table 3). As before, ndig = 2, 
u(y) = 20 × 10−1, c = 20, ℓ = −1 and δ = 0.05. The endpoint differences dlow and dhigh are larger than for the 
case of normally distributed quantities (Table 2). For the first of the two applications of the adaptive Monte 
Carlo procedure, the GUM uncertainty framework is validated. For the second application, it is not validated, 
although dlow and dhigh for this application are close to the numerical tolerance δ = 0.05 (seen if more decimal 
digits than in Table 3 are considered). Different validation results such as these are an occasional 
consequence of the stochastic nature of the Monte Carlo method, especially in a case such as that here. 

Table 3 — As Table 2, but for rectangular PDFs, with the Xi having the same expectations and 
standard deviations (9.2.3.2, 9.2.3.3 and 9.2.3.4) 

Method M y u(y) Probabilistically symmetric
95 % coverage interval 

dlow dhigh GUF validated 
(δ = 0.05)? 

GUF  0.00 2.00 [−3.92, 3.92]    

MCM 105 0.00 2.01 [−3.90, 3.89]    

MCM 106 0.00 2.00 [−3.89, 3.88]    

MCM 106 0.00 2.00 [−3.88, 3.88]    

Adaptive MCM 1.02 × 106 0.00 2.00 [−3.88, 3.89] 0.04 0.03 Yes 

Adaptive MCM 0.86 × 106 0.00 2.00 [−3.87, 3.87] 0.05 0.05 No 

Analytical  0.00 2.00 [−3.88, 3.88]    

 

 

Key 

X Output quantity/unit 
Y Probability density/unit−1 

Figure 8 — The counterpart of Figure 6 for quantities having the same expectations and standard 
deviations (9.2.3.3), but rectangular PDFs 
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9.2.4 Rectangularly distributed input quantities with different widths 

9.2.4.1 Consider the example of 9.2.3, except that X4 has a standard deviation of ten rather than unity. 
Table 4 contains the results obtained. 

9.2.4.2 The numbers M of Monte Carlo trials taken by the adaptive procedure (0.03 × 106 and 0.08 × 106) 
are much smaller than they were for the two previous cases in this example. The main reason is that, in this 
case, δ  = 0.5, the numerical tolerance resulting from requesting, as before, two significant decimal digits in 
u(y), is ten times the previous value. Were the previous value to be used, M would be of the order of 100 times 
greater. 

Table 4 — As Table 3, except that the fourth input quantity has a standard deviation of ten rather than 
unity, and no analytic solution is provided (9.2.4.1 and 9.2.4.5) 

Method M y u(y) Probabilistically symmetric
95 % coverage interval 

dlow dhigh GUF validated 
(δ = 0.5)? 

GUF  0.0 10.1 [−19.9, 19.9]    
MCM 105 0.0 10.2 [−17.0, 17.0]    
MCM 106 0.0 10.2 [−17.0, 17.0]    
MCM 106 0.0 10.1 [−17.0, 17.0]    

Adaptive MCM 0.03 × 106 0.1 10.2 [−17.1, 17.1] 2.8 2.8 No 
Adaptive MCM 0.08 × 106 0.0 10.1 [−17.0, 17.0] 2.9 2.9 No 

 

9.2.4.3 Figure 9 shows the two approximations obtained to the PDF for Y. They differ appreciably. The 
dominance of the PDF for X4 is evident. The PDF for Y resembles that for X4, but there is an effect in the 
flanks resulting from the PDFs for the other Xi. 

9.2.4.4 Figure 9 also shows the endpoints of the probabilistically symmetric 95 % coverage interval for Y 
obtained from these approximations. The inner pair of vertical lines indicates the endpoints of the 
probabilistically symmetric 95 % coverage interval determined by MCM. The outer pair results from the GUM 
uncertainty framework, with a coverage factor of k = 1.96. 

 
Key 
X Output quantity/unit 
Y Probability density/unit−1 

Figure 9 — As Figure 8, except that the fourth input quantity has a standard deviation of ten rather 
than unity (9.2.4.3 and 9.2.4.4) 
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9.2.4.5 The probabilistically symmetric 95 % coverage interval determined on the basis of the GUM 
uncertainty framework in this case is more conservative than that obtained using MCM. Again, the validation 
procedure was applied (columns 6 to 8 of Table 4). Now, ndig = 2, u(y) = 1.0 × 101 = 10 × 100, c = 10, ℓ = 0 and 
δ = 1/2 × 100 = 0.5. For the two applications of the adaptive Monte Carlo procedure, the GUM uncertainty 
framework is not validated. For a numerical tolerance of one significant decimal digit in u(y), i.e. ndig = 1, for 
which δ = 5, the validation status would be positive in both cases, the 95 % coverage intervals all being 
[−2 × 101, 2 × 101]. See 4.13. 

NOTE The conditions for the central limit theorem to apply are not well met in this circumstance 
[ISO/IEC Guide 98-3:2008, G.6.5], because of the dominating effect of the rectangular PDF for X4 (5.7.2). However, 
because these conditions are often in practice assumed to hold, especially when using proprietary software for uncertainty 
evaluation (cf. 9.4.2.5 Note 3), the characterization of Y by a Gaussian PDF on the assumption of the applicability of this 
theorem is made in this subclause for comparison purposes. 

9.3 Mass calibration 

9.3.1 Formulation 

9.3.1.1 Consider the calibration of a weight W of mass density ρW against a reference weight R of mass 
density ρR having nominally the same mass, using a balance operating in air of mass density ρa [39]. Since 
ρW and ρR are generally different, it is necessary to account for buoyancy effects. Applying Archimedes’ 
principle, the model takes the form 

( ) ( )( )W a W R R a R1 1m m mρ ρ ρ ρ− = + δ −  (22) 

where δmR is the mass of a small weight of density ρR added to R to balance it with W. 

9.3.1.2 It is usual to work in terms of conventional masses. The conventional mass mW,c of W is the mass 
of a (hypothetical) weight of density ρ0 = 8 000 kg/m3 that balances W in air at density ρa0

 = 1.2 kg/m3. Thus, 

0 0W a W W c a 0(1 ) (1 )m mρ ρ ρ ρ,− = −  

9.3.1.3 In terms of conventional masses mW,c, mR,c and δmR,c, the Model (22) becomes 

0 0
1 1

W,c a W a W R,c R,c a R a R(1 )(1 ) ( ) (1 )(1 )m m mρ ρ ρ ρ ρ ρ ρ ρ− −− − = + δ − −  (23) 

from which, to an approximation adequate for most practical purposes, 

( )0W,c R,c R,c a a
W R

1 1( ) 1m m m ρ ρ
ρ ρ

⎡ ⎤⎛ ⎞
= + δ + − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

Let 

W,c nomm m mδ = −  

be the deviation of mW,c from the nominal mass 

nom 100 gm = .  

The model used in this example is given by 

( )0R,c R,c a a nom
W R

1 1( ) 1m m m mρ ρ
ρ ρ

⎡ ⎤⎛ ⎞
δ = + δ + − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (24) 

NOTE Applying the law of propagation of uncertainty to the “exact” Model (23) is made difficult by the algebraic 
complexity of the partial derivatives. It is easier to apply MCM, because only model values need be formed. 
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9.3.1.4 The only information available concerning mR,c and δmR,c is a best estimate and an associated 
standard uncertainty for each of these quantities. Accordingly, following 6.4.7.1, a Gaussian distribution is 
assigned to each of these quantities, with these best estimates used as the expectations of the corresponding 
quantities and the associated standard uncertainties as the standard deviations. The only information 
available concerning ρa, ρW and ρR is lower and upper limits for each of these quantities. Accordingly, 
following 6.4.2.1, a rectangular distribution is assigned to each of these quantities, with limits equal to the 
endpoints of the distribution. Table 5 summarizes the input quantities and the PDFs assigned. In the table, a 
Gaussian distribution N(µ,σ 2) is described in terms of expectation µ and standard deviation σ, and a 
rectangular distribution R(a, b) with endpoints a and b (a < b) in terms of expectation (a + b)/2 and semi-width 
(b − a)/2. 

NOTE The quantity ρa0
 in the mass calibration Model (24) is assigned the value 1.2 kg/m3 with no associated 

uncertainty. 

Table 5 — The input quantities Xi and the PDFs assigned to them for the Mass Calibration Model (24) 
(9.3.1.4) 

Parameters 

Xi Distribution Expectation 
µ 

Standard  
deviation 

σ 

Expectation 
x = (a + b)/2 

Semi-width 
(b − a)/2 

mR,c N(µ, σ2) 100 000.000 mg 0.050 mg   
δmR,c N(µ, σ2)            1.234 mg 0.020 mg   

ρa R(a, b)             1.20 kg/m3           0.10 kg/m3 
ρW R(a, b)        8 × 103 kg/m3      1 × 103 kg/m3 
ρR R(a, b)   8.00 × 103 kg/m3 0.05 × 103 kg/m3 

 

9.3.2 Propagation and summarizing 

9.3.2.1 The GUM uncertainty framework and the adaptive Monte Carlo procedure (7.9) were each used 
to obtain an estimate mδ

︿
 of δm, the associated standard uncertainty ( ),u mδ

︿
 and the shortest 95 % coverage 

interval for δm. The results obtained are shown in Table 6, in which GUF1 denotes the GUM uncertainty 
framework with first-order terms, MCM the adaptive Monte Carlo procedure, and GUF2 the GUM uncertainty 
framework with higher-order terms. 

9.3.2.2 0.72 × 106 trials were taken by the adaptive Monte Carlo procedure with the use of a numerical 
tolerance of δ /5 (8.2) with δ set for the case where one significant decimal digit in ( )u mδ

︿
 is regarded as 

meaningful (9.3.2.6). 

9.3.2.3 Figure 10 shows the approximations to the PDF for δm obtained from the GUM uncertainty 
framework with first-order terms and MCM. The continuous curve represents a Gaussian PDF with 
parameters given by the GUM uncertainty framework. The inner pair of (broken) vertical lines indicates the 
shortest 95 % coverage interval for δm based on this PDF. The histogram is the scaled frequency distribution 
obtained using MCM as an approximation to the PDF. The outer pair of (continuous) vertical lines indicates 
the shortest 95 % coverage interval for δm based on the discrete representation of the distribution function 
determined as in 7.5. 

Table 6 — Results of the calculation stage for the Mass Calibration Model (24) (9.3.2.1 and 9.3.2.6) 

Method mδ
︿

 
/mg 

( )u mδ
︿

 
/mg 

Shortest 95 % 
coverage interval /mg 

dlow 
/mg 

dhigh 
/mg 

GUF validated
(δ = 0.005)? 

GUF1 1.234 0 0.053 9 [1.128 5, 1.339 5] 0.045 1 0.043 0 No 
MCM 1.234 1 0.075 4 [1.083 4, 1.382 5]    
GUF2 1.234 0 0.075 0 [1.087 0, 1.381 0] 0.003 6 0.001 5 Yes 
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Key 

X Deviation δm of conventional mass from nominal/mg 

Y Probability density/mg−1 

Figure 10 — Approximations to the PDF for the output quantity δm obtained using the GUM 
uncertainty framework with first-order terms and MCM (9.3.2.3) 

9.3.2.4 The results show that, although the GUM uncertainty framework (first order) and MCM give 
estimates of δm in good agreement, the numerical values for the associated standard uncertainty are 
noticeably different. The value (0.075 4 mg) of ( )u mδ

︿
 returned by MCM is 40 % larger than that (0.053 9 mg) 

returned by the GUM uncertainty framework (first order). The latter is thus optimistic in this respect. There is 
good agreement between ( )u mδ

︿
 determined by MCM and that (0.075 0 mg) provided by the GUM uncertainty 

framework with higher-order terms. 

9.3.2.5 Table 7 contains the partial derivatives of first order for the Model (24) with respect to the input 
quantities together with the sensitivity coefficients, viz. these derivatives evaluated at the best estimates of the 
input quantities. These derivatives indicate that, for the purposes of the GUM uncertainty framework with first-
order terms, the model for this example can be considered as being replaced by the additive model 

R,c R,c nomm m m mδ = + δ −  

MCM makes no such (implied) approximation to the model. 

Table 7 — Sensitivity coefficients for the Mass Calibration Model (24) (9.3.2.5) 

Xi Partial derivative Sensitivity 
coefficient 

mR,c 1 + (ρa − ρa0
)(1/ρW − 1/ρR) 1 

δmR,c 1 + (ρa − ρa0
)(1/ρW − 1/ρR) 1 

ρa (mR,c + δmR,c)(1/ρW − 1/ρR) 0 

ρW −(mR,c + δmR,c)(ρa − ρa0
)/ρW

2 0 

ρR (mR,c + δmR,c)(ρa − ρa0
)/ρR

2 0 
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9.3.2.6 Table 6 also shows in the right-most three columns the results of applying the validation 
procedure of 8.1 and 8.2 in the case where one significant decimal digit in ( )u mδ

︿
 is regarded as meaningful. 

Using the terminology of that subclause, ndig = 1, since a numerical tolerance of one significant decimal digit in 
( )u mδ
︿

 is required. Hence, ( )u mδ
︿

 = 0.08 = 8 × 10−2, and so the c in 7.9.2 equals 8 and ℓ = −2. Thus 
δ = 1/2 × 10−2 = 0.005. dlow and dhigh denote the magnitudes of the endpoint differences (19) and (20), where 
y there corresponds to mδ

︿
. Whether the results were validated to one significant decimal digit in ( )u mδ

︿
 is 

indicated in the final column of the table. If only first-order terms are accounted for, the application of the GUM 
uncertainty framework is not validated. If higher-order terms are accounted for [ISO/IEC Guide 98-3:2008, 
5.1.2 Note], the GUM uncertainty framework is validated. Thus, the non-linearity of the model is such that 
accounting for first-order terms only is inadequate. 

9.4 Comparison loss in microwave power meter calibration 

9.4.1 Formulation 

9.4.1.1 During the calibration of a microwave power meter, the power meter and a standard power meter 
are connected in turn to a stable signal generator. The power absorbed by each meter will in general be 
different because their complex input voltage reflection coefficients are not identical. The ratio Y of the power 
PM absorbed by the meter being calibrated and that, PS, by the standard meter is [43] 

22
S GMM

2 2
S S M G

11

1 1

P
Y

P
− Γ Γ− Γ

= = ×
− Γ − Γ Γ

 (25) 

where ΓG is the voltage reflection coefficient of the signal generator, ΓM that of the meter being calibrated and 
ΓS that of the standard meter. This power ratio is an instance of “comparison loss” [1, 28]. 

9.4.1.2 Consider the case where the standard and the signal generator are reflectionless, i.e. 
ΓS = ΓG = 0, and measured values are obtained of the real and imaginary parts X1 and X2 of ΓM = X1 + jX2, 
where j2 = −1. Since ⏐ΓM⏐2 = 2

1X  + 2
2 ,X  Formula (25) becomes 

2 2
1 21Y X X= − −  (26) 

9.4.1.3 Given respectively are best estimates x1 and x2 of the quantities X1 and X2 from measurement 
and the associated standard uncertainties u(x1) and u(x2). X1 and X2 are often not independent. Denote by 
u(x1, x2) the covariance associated with x1 and x2. Equivalently [ISO/IEC Guide 98-3:2008, 5.2.2], 
u(x1, x2) = r(x1, x2)u(x1)u(x2), where r = r(x1, x2) denotes the associated correlation coefficient 
[ISO/IEC Guide 98-3:2008, 5.2.2]. 

NOTE In practice, the electrical engineer may sometimes have difficulty in quantifying the covariance. In such cases, 
the uncertainty evaluation can be repeated with different trial numerical values for the correlation coefficient in order to 
study its effect. This example carries out calculations using a correlation coefficient of zero and of 0.9 (cf. 9.4.1.7). 

9.4.1.4 On the basis of 6.4.8.1, X = (X1, X2)T is assigned a bivariate Gaussian PDF in X1 and X2, with 
expectation and covariance matrix 

2
1 1 1 2

22 1 2 2

( ) ( ) ( )
( ) ( ) ( )

x u x ru x u x
x ru x u x u x

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
, ⎢ ⎥

⎢ ⎥⎣ ⎦
 (27) 

9.4.1.5 Because the magnitudes of X1 and X2 in Expression (26) are in practice small compared with 
unity, the resulting Y is close to unity. Results are accordingly expressed in terms of the quantity 

2 2
1 21Y Y X Xδ = − = +  (28) 

taken as the model of measurement. For physical reasons, 0 u Y u 1, and hence 0 u δY u 1. 
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9.4.1.6 The determination of an estimate δy of δY, the associated standard uncertainty u(δy), and a 
coverage interval for δY will be considered for choices of x1, x2, u(x1), u(x2) and r(x1, x2). All quantities have 
dimension 1. 

9.4.1.7 Six cases are considered, in all of which x2 is taken as zero and u(x1) = u(x2) = 0.005. The first 
three of these cases correspond to taking x1 = 0, 0.010, and 0.050, each with r(x1, x2) = 0. The other three 
cases correspond to taking the same x1, but with r(x1, x2) = 0.9. The various numerical values of x1 
(comparable to those occurring in practice) are used to investigate the extent to which the results obtained 
using the considered approaches differ. 

9.4.1.8 For the cases in which r = r(x1, x2) = 0, the covariance matrix given in Formulae (27) reduces to 
diag[u2(x1), u2(x2)] and the corresponding joint distribution for X1 and X2 to the product of two univariate 
Gaussian distributions for Xi, for i = 1, 2, with expectation xi and standard deviation u(xi). 

9.4.2 Propagation and summarizing: zero covariance 

9.4.2.1 General 

9.4.2.1.1 The evaluation of uncertainty is treated by applying the propagation of distributions 

a) analytically (for purposes of comparison), 

b) using the GUM uncertainty framework, and 

c) using MCM. 

NOTE These approaches do not constrain the PDF for δY to be no greater than unity. However, for sufficiently small 
uncertainties u(x1) and u(x2), as here, the PDF for δY may adequately be approximated by a simpler PDF defined over all 
non-negative values of δY. A rigorous treatment, using Bayesian inference [51], which applies regardless of the 
magnitudes of u(x1) and u(x2), is possible, but beyond the scope of this Supplement. Also see Clause 1 Note 2. 

9.4.2.1.2 δy and u(δy) can generally be formed analytically as the expectation and standard deviation of δY, 
as characterized by the PDF for δY. See Clause F.1. The PDF for δY can be formed analytically when x1 = 0 
and, in particular, used to determine the endpoints of the shortest 95 % coverage interval in that case. See 
Clause F.2. 

9.4.2.1.3 The GUM uncertainty framework with first-order terms and with higher-order terms is applied for 
each of the three estimates x1 in the uncorrelated case. See Clause F.3. An estimate δy of δY is formed in 
each case [ISO/IEC Guide 98-3:2008, 4.1.4] from 

2 2
1 2y x xδ = +  

9.4.2.1.4 MCM is applied in each case with M = 106 trials. 

9.4.2.2 Input estimate x1 = 0 

9.4.2.2.1 For the input estimate x1 = 0, higher-order terms must be used when applying the law of 
propagation of uncertainty, because the partial derivatives of δY with respect to X1 and X2, evaluated at X1 = x1 
and X2 = x2, are identically zero when x1 = x2 = 0. Thus, if the law of propagation of uncertainty with first-order 
terms only were applied, the resulting standard uncertainty would incorrectly be computed as zero. 

NOTE A similar difficulty would arise for x1 close to zero. 

9.4.2.2.2 Figure 11 shows the PDFs for δY determined by applying the propagation of distributions 

a) analytically (the exponentially decreasing curve for δY W 0 and zero elsewhere), 

b) using the GUM uncertainty framework with higher-order terms in order to characterize the output quantity 
by a Gaussian PDF (bell-shaped curve), and 

c) using MCM (scaled frequency distribution). 
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Key 

X Deviation δY of comparison loss from unity/10−6 

Y Probability density/10−3 

Figure 11 — Results for the model of comparison loss in power meter calibration in the case 
x1 = x2 = 0, with u(x1) = u(x2) = 0.005 and r(x1, x2) = 0 

(9.4.2.2.2, 9.4.2.2.6, 9.4.2.2.9 and 9.4.2.2.11) 

9.4.2.2.3 It is seen in the figure that the use of the GUM uncertainty framework with higher-order terms in 
order to characterize the output quantity by a Gaussian distribution yields a PDF that is very different from the 
analytic solution. The latter takes the form of a particular chi-squared distribution—the sum of squares of two 
standard Gaussian variables (Clause F.2). 

9.4.2.2.4 Since the partial derivatives of the Model (28) of order higher than two are all identically zero, the 
solution obtained essentially corresponds to taking all Taylor-series terms, i.e. the full non-linearity of the 
problem, into account. Thus, the particular Gaussian distribution so determined is the best that is possible 
using the GUM uncertainty framework to characterize the output quantity by such a distribution. 

9.4.2.2.5 It can therefore be concluded that the reason for the departure from the analytic solution of the 
results of the use of the approach based on the GUM uncertainty framework is that the output quantity is 
characterized by a Gaussian PDF. No Gaussian PDF, however it is obtained, could adequately represent the 
analytic solution in this case. 

9.4.2.2.6 It is also seen in Figure 11 that the PDF provided by MCM is consistent with the analytic solution. 

9.4.2.2.7 The estimates δy determined as the expectation of δY described by the PDFs obtained 

a) analytically, 

b) using the GUM uncertainty framework, and 

c) applying MCM 

are given in columns 2 to 4 of the row corresponding to x1 = 0.000 in Table 8. Columns 5 to 8 contain the 
corresponding u(δy), with those obtained using the GUM uncertainty framework with first-order terms (G1) and 
higher-order terms (G2). 
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9.4.2.2.8 The estimate δy = 0 obtained by evaluating the model at the input estimates is invalid: the correct 
(analytic) gδY (η) is identically zero for δY < 0; this estimate lies on the boundary of the non-zero part of that 
function. The estimate provided by MCM agrees with that obtained analytically. The law of propagation of 
uncertainty based on first-order terms gives the wrong, zero, value for u(δy) already noted. The value 
(50 × 10−6) from the law of propagation of uncertainty based on higher-order terms agrees with that obtained 
analytically and by MCM. 

NOTE When MCM was repeated several times, the results obtained were scattered about 50 × 10−6. When it was 
repeated a number of times with a larger numerical value of M, the results were again scattered about 50 × 10−6, but with 
a reduced dispersion. Such dispersion effects are expected, and were observed for the other Monte Carlo calculations 
made. Reporting the results to greater numbers of significant decimal digits would be necessary to see the actual 
numerical differences. 

9.4.2.2.9 Figure 11 also shows the shortest 95 % coverage intervals for the corresponding approximations 
to the distribution function for δY. The 95 % coverage interval, indicated by broken vertical lines, as provided 
by the GUM uncertainty framework is infeasible: it is symmetric about δY = 0 and therefore erroneously implies 
there is a 50 % probability that δY is negative. The continuous vertical lines are the endpoints of the shortest 
95 % coverage interval derived from the analytic solution, as described in Clause F.2. The endpoints of the 
shortest 95 % coverage interval determined using MCM are indistinguishable to graphical accuracy from those 
for the analytic solution. 

9.4.2.2.10 The endpoints of the shortest coverage intervals relating to the standard uncertainties in 
columns 5 to 8 of the row corresponding to x1 = 0.000 in Table 8 are given in columns 9 to 12 of that table. 

Table 8 — Comparison loss results, for input estimates with associated zero covariance, obtained 
analytically (A), and using the GUM uncertainty framework with first-order terms (G1) and higher-order 

terms (G2) and MCM (M) (9.4.2.2.7, 9.4.2.2.10, 9.4.2.3.4 and 9.4.2.4.2) 

x1 Estimate 

δy/10−6 

Standard uncertainty 

u(δy)/10−6 

Shortest 95 % coverage interval for 

δY/10−6 

 A G M A G1 G2 M A G1 G2 M 

0.000 50 0 50 50 0 50 50 [0, 150] [0, 0] [–98, 98] [0, 150]

0.010 150 100 150 112 100 112 112 — [−96, 296] [−119, 319] [0, 367]

0.050 2 550 2 500 2 551 502 500 502 502 — [1 520, 3 480] [1 515, 3 485] [1 590, 3 543]

 

9.4.2.2.11 Figure 12 shows the length of the 95 % coverage interval (7.7), as a function of the probability 
value at its left-hand endpoint, for the approximation to the PDF provided by MCM shown in Figure 11. The 
95 % coverage interval does not take its shortest length when symmetrically located with respect to the 
expectation in this case. Indeed, the shortest 95 % coverage interval is as far-removed as possible from a 
probabilistically symmetric coverage interval, the left and right tail probabilities being 0 % and 5 %, 
respectively, as opposed to 2.5 % and 2.5 %. This figure can be compared with that (Figure 7) for the additive 
model of 9.2, for which the PDF for Y is symmetric about its expectation. 
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Key 

X Left-hand probability 
Y Length of coverage interval/10−6 

Figure 12 — The length of the 95 % coverage interval, as a function of the probability value at its 
left-hand endpoint, for the approximation to the distribution function obtained by applying MCM to the 

Model (28) (9.4.2.2.11) 

9.4.2.3 Input estimate x1 = 0.010 

9.4.2.3.1 For the input estimate x1 = 0.010, with correlation coefficient r(x1, x2) = 0, Figure 13 shows the 
PDFs obtained using the GUM uncertainty framework with first-order terms only and with higher-order terms, 
and using MCM. 

9.4.2.3.2 The PDF provided by MCM exhibits a modest left-hand flank, although it is truncated at zero, the 
smallest possible numerical value of δY. Further, compared with the results for x1 = 0, it is closer in form to the 
Gaussian PDFs provided by the GUM uncertainty framework. These Gaussian PDFs are in turn reasonably 
close to each other, δY having expectation 1.0 × 10−4 and standard deviations 1.0 × 10−4 and 1.1 × 10−4, 
respectively. 

9.4.2.3.3 Figure 13 also shows the endpoints of the shortest 95 % coverage intervals obtained by the three 
approaches. The continuous vertical lines denote the endpoints of the interval provided by MCM, the heavy 
broken vertical lines those resulting from the GUM uncertainty framework with first-order terms, and the light 
broken vertical lines from the GUM uncertainty framework with higher-order terms. The intervals provided by 
the GUM uncertainty framework are shifted to the left compared with the shortest 95 % coverage interval for 
MCM. As a consequence, they again include infeasible values of δY. The shift is about 70 % of the standard 
uncertainty. The interval provided by MCM has its left-hand endpoint at zero, the smallest feasible value. 

9.4.2.3.4 The corresponding results are given in the penultimate row of Table 8. 
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Key 

X Deviation δY of comparison loss from unity/10−6 

Y Probability density/10−3 

Figure 13 — As Figure 11 except that x1 = 0.010, and the PDFs resulting from the GUM uncertainty 
framework with first-order (higher-peaked curve) and with higher-order terms (lower-peaked curve) 

(9.4.2.3.1, 9.4.2.3.3, 9.4.2.4.1 and 9.4.3.3) 

9.4.2.4 Input estimate x1 = 0.050 

9.4.2.4.1 Figure 14 is similar to Figure 13, but is for x1 = 0.050. Now, the PDFs provided by both variants of 
the GUM uncertainty framework are virtually indistinguishable from each other. Further, they are now much 
closer to the approximation to the PDF provided by MCM. That PDF exhibits a slight skewness, as evidenced 
in the tail regions. The coverage intervals provided by the two variants of the GUM uncertainty framework are 
visually almost identical, but still shifted from those for MCM. The shift is now about 10 % of the standard 
uncertainty. The intervals provided by the GUM uncertainty framework are now feasible. 

9.4.2.4.2 The corresponding results are given in the final row of Table 8. 

9.4.2.5 Discussion 

As x1 becomes increasingly removed from zero, the results given by the GUM uncertainty framework, with 
first-order and with higher-order terms, and those for MCM become closer to each other. 

NOTE 1 The numerical values x1 = x2 = 0 lie in the centre of the region of interest to the electrical engineer, 
corresponding to the so-called “matched” condition for the power meter being calibrated, and thus in no sense constitute 
an extreme case. 

NOTE 2 Because of the symmetry of the model in X1 and X2, exactly the same effect would occur were x2 used in 
place of x1. 

NOTE 3 One reason why the GUM uncertainty framework with first-order terms (only) might be used in practice is that 
software for its implementation is readily available: results obtained from it might sometimes be accepted without question. 
For the case where x1 = x2 = 0 (Figure 11), the danger would be apparent because the standard uncertainty u(δy) was 
computed as zero, and consequently any coverage interval for δY would be of zero length for any coverage probability. For 
x1 ≠ 0 (or x2 ≠ 0), u(δy) and the length of the coverage interval for δY are both non-zero, so no such warning would be 
available without prior knowledge of likely values for u(δy) and this length. Thus, a danger in implementing software based 
on the GUM uncertainty framework for these calculations is that checks of the software for x1 or x2 sufficiently far from zero 
would not indicate such problems, although, when used subsequently in practice for small values of x1 or x2, the results 
would be invalid, but conceivably unwittingly accepted. 
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X Deviation δY of comparison loss from unity/10−6 

Y Probability density/10−4 

Figure 14 — As Figure 13 except that x1 = 0.050 (9.4.2.4.1 and 9.4.3.3) 

9.4.3 Propagation and summarizing: non-zero covariance 

9.4.3.1 General 

9.4.3.1.1 The three approaches used in the cases where the Xi are uncorrelated (9.4.2) are now applied for 
the three cases in which they are correlated, with r(x1, x2) = 0.9. However, the GUM uncertainty framework 
with first-order terms only is used. Unlike the cases where the Xi are uncorrelated, the GUM uncertainty 
framework with higher-order terms is not applied, no counterpart being provided in the GUM for the formula 
containing higher-order terms when the xi have associated non-zero covariances (5.8). Other aspects match 
those in 9.4.2. 

9.4.3.1.2 For the GUM uncertainty framework with first-order terms, u(δy) is evaluated as described 
in F.3.2. Expression (F.7) in that subclause gives, for x2 = 0, 

2 2 2
1 1( ) 4 ( )u y x u xδ =  

Consequently, u(δy) does not depend on r(x1, x2) and the GUM uncertainty framework with first-order terms 
gives identical results to those presented in 9.4.2. In particular, for the case x1 = 0, u(δy) is (incorrectly) 
computed as zero, as in 9.4.2.2.1. 

9.4.3.1.3 MCM was implemented by sampling randomly from X characterized by a bivariate Gaussian PDF 
with the given expectation and covariance matrix [Expressions (27)]. The procedure in Clause C.5 was used. 

NOTE Apart from the requirement to draw from a multivariate distribution, the implementation of MCM for input 
quantities that are correlated is no more complicated than when the input quantities are uncorrelated. 
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9.4.3.2 Input estimates x1 = 0, 0.010, and 0.050 

9.4.3.2.1 Table 9 contains the results obtained. Those from MCM indicate that although δy is unaffected by 
the correlation between the Xi, u(δy) is so influenced, more so for small x1. The 95 % coverage intervals are 
influenced accordingly. 

Table 9 — Comparison loss results, for input estimates with associated non-zero covariance 
(r(x1,x2) = 0.9), obtained analytically, and using the GUM uncertainty framework (GUF) and MCM 

(9.4.3.2.1) 

x1 Estimate 

δy/10−6 

Standard uncertainty 

u(δy)/10−6 

Shortest 95 % coverage interval for 

δY/10−6 

 Analytical GUF MCM Analytical GUF MCM Analytical GUF MCM 

0.000  50  0  50  67  0  67 — [0, 0] [0, 185]

0.010  150  100  150  121  100  121 — [−96, 296] [13, 398]

0.050  2 550  2 500  2 551  505  500  504 — [1 520, 3 480] [1 628, 3 555]

 

9.4.3.2.2 Figures 15 and 16 show the PDFs provided by the GUM uncertainty framework with first-order 
terms (bell-shaped curves) and MCM (scaled frequency distributions) in the cases x1 = 0.010 and x1 = 0.050, 
respectively. The endpoints of the shortest 95 % coverage interval provided by the two approaches are also 
shown as broken vertical lines for the GUM uncertainty framework and continuous vertical lines for MCM. 

NOTE Strictly, the conditions under which δY can be characterized by a Gaussian PDF do not hold following an 
application of the GUM uncertainty framework in this circumstance (5.8) [ISO/IEC Guide 98-3:2008, G.6.6]. However, this 
PDF and the endpoints of the corresponding 95 % coverage interval are shown because such a characterization is 
commonly used. 

 

Key 

X Deviation δY of comparison loss from unity/10−6 

Y Probability density/10−3 

Figure 15 — Results for the model of comparison loss in power meter calibration in the case 
x1 = 0.010, x2 = 0, with u(x1) = u(x2) = 0.005 and r(x1, x2) = 0.9 (9.4.3.2.2, and 9.4.3.3) 
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Key 

X Deviation δY of comparison loss from unity/10−6 

Y Probability density/10−4 

Figure 16 — As Figure 15 except that x1 = 0.050 (9.4.3.2.2 and 9.4.3.3) 

 

9.4.3.3 Discussion 

In the case x1 = 0.010 (Figure 15), the effect of the correlation has been to change noticeably the results 
returned by MCM (compare with Figure 13). Not only has the shape of (the approximation to) the PDF 
changed, but the corresponding coverage interval no longer has its left-hand endpoint at zero. In the case 
x1 = 0.050 (Figure 16), the differences between the results for the cases where the input quantities are 
uncorrelated and correlated (compare with Figure 14) are less obvious. 

9.5 Gauge block calibration 

9.5.1 Formulation: model 

9.5.1.1 The length of a nominally 50 mm gauge block is determined by comparing it with a known 
reference standard of the same nominal length. The direct output of the comparison of the two gauge blocks is 
the difference d in their lengths given by 

s s s(1 ) (1 )d L Lαθ α θ= + − +  (29) 

where L is the length at 20 °C of the gauge block being calibrated, Ls is the length of the reference standard at 
20 °C as given in its calibration certificate, α and αs are the coefficients of thermal expansion, respectively, of 
the gauge being calibrated and the reference standard, and θ and θs are the deviations in temperature from 
the 20 °C reference temperature, respectively, of the gauge block being calibrated and the reference 
standard. 

NOTE 1 The GUM refers to a gauge block as an end gauge. 

NOTE 2 The symbol L for the length of a gauge block is used in this Supplement in place of the symbol ℓ used in the 
GUM for that quantity. 
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9.5.1.2 From Expression (29), the output quantity L is given by 

s s s(1 )
1

L d
L

α θ
αθ

+ +
=

+
 (30) 

from which, to an approximation adequate for most practical purposes, 

s s s s( )L L d L α θ αθ= + + −  (31) 

If the difference in temperature between the gauge block being calibrated and the reference standard is 
written as δθ = θ − θs, and the difference in their thermal expansion coefficients as δα = α − αs, Models (30) 
and (31) become, respectively, 

s s

s

[1 ( )]
1 ( )

L d
L

α θ θ
α α θ

+ − δ +
=

+ + δ
 (32) 

and 

s s s( )L L d L θ α α θ= + − δ + δ  (33) 

9.5.1.3 The difference d in the lengths of the gauge block being calibrated and the reference standard is 
determined as the average of a series of five indications, obtained independently, of the difference using a 
calibrated comparator. d can be expressed as 

1 2d D d d= + +  (34) 

where 

D is a quantity of which the average of the five indications is a realization, and 

d1 and d2 are quantities describing, respectively, the random and systematic effects associated with 
using the comparator. 

9.5.1.4 The quantity θ, representing deviation of the temperature from 20 °C of the gauge block being 
calibrated, can be expressed as 

0θ θ ∆= +  (35) 

where 

θ0 is a quantity representing the average temperature deviation of the gauge block from 20 °C, and 

∆ is a quantity describing a cyclic variation of the temperature deviation from θ0. 

9.5.1.5 Substituting Expressions (34) and (35) into Expressions (32) and (33), and working with the 
quantity δL representing the deviation of L from the nominal length 

nom 50 mmL =  

of the gauge block, gives 

s s 0 1 2
nom

s 0

[1 ( )]
1 ( )( )

L D d d
L L

α θ ∆ θ
α α θ ∆

+ + − δ + + +
δ = −

+ + δ +
 (36) 

and 

s 1 2 s 0 s nom[ ( ) ]L L D d d L Lα θ ∆ α θδ = + + + − δ + + δ −  (37) 

as models for the measurement problem. 
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9.5.1.6 The treatment here of the measurement problem is in terms of the Models (36) and (37) with 
output quantity δL and input quantities Ls, D, d1, d2, αs, θ0, ∆, δα and δθ. It differs from that given in GUM 
example H.1 in that in the GUM the Models (34) and (35) above are treated as sub-models to Models (32) and 
(33), i.e. the GUM uncertainty framework is applied to each Model (34) and (35), with the results obtained 
used to provide information about the input quantities d and θ in Models (32) and (33). The treatment here 
avoids having to use the results obtained from MCM applied to the sub-models (34) and (35) to provide 
information about the distributions for the input quantities d and θ in Expressions (32) and (33). 

9.5.2 Formulation: assignment of PDFs 

9.5.2.1 General 

In the following subclauses, the available information about each input quantity in the Models (36) and (37) is 
provided. This information is extracted from the description given in the GUM, and for each item of information 
the GUM subclause from which the item is extracted is identified. Also provided is an interpretation of the 
information in terms of an assignment of a distribution to the quantity. Table 10 summarizes the assignments 
made. 

Table 10 — PDFs assigned to input quantities for the gauge block Models (36) and (37) on the basis of 
available information (9.5.2.1). Table 1 provides general information concerning these PDFs 

Parameters Quantity PDF 
µ σ ν a b d 

Ls tν (µ, σ 
2) 50 000 623 nm 25 nm 18    

D tν (µ, σ 
2) 215 nm 6 nm 24    

d1 tν (µ, σ 
2) 0 nm 4 nm 5    

d2 tν (µ, σ 
2) 0 nm 7 nm 8    

αs R(a, b)    9.5 × 10−6 °C−1 13.5 × 10−6 °C−1  
θ0 N(µ, σ 

2) −0.1 °C 0.2 °C     
∆ U(a, b)    −0.5 °C 0.5 °C  
δα CTrap(a, b, d)    −1.0 × 10−6 °C−1 1.0 × 10−6 °C−1 0.1 × 10−6 °C−1

δθ CTrap(a, b, d)    −0.050 °C 0.050 °C 0.025 °C 
 

9.5.2.2 Length Ls of the reference standard 

9.5.2.2.1 Information 

The calibration certificate for the reference standard gives sL
︿

= 50.000 623 mm as its length at 20 °C 
[ISO/IEC Guide 98-3:2008, H.1.5]. It gives Up = 0.075 µm as the expanded uncertainty of the reference 
standard and states that it was obtained using a coverage factor of kp = 3 [ISO/IEC Guide 98-3:2008, H.1.3.1]. 
The certificate states that the effective degrees of freedom associated with the combined standard 
uncertainty, from which the quoted expanded uncertainty was obtained, is eff s( )( )u Lν

︿
 = 18 

[ISO/IEC Guide 98-3:2008, H.1.6]. 

9.5.2.2.2 Interpretation 

Assign a scaled and shifted t-distribution tν (µ, σ 2) (6.4.9.7) to Ls, with 

7550 000 623 nm nm 25 nm 18
3

p

p

U

k
µ σ ν= , = = = , =  
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9.5.2.3 Average length difference D 

9.5.2.3.1 Information 

The average D
︿

of the five indications of the difference in lengths between the gauge block being calibrated 
and the reference standard is 215 nm [ISO/IEC Guide 98-3:2008, H.1.5]. The pooled experimental standard 
deviation characterizing the comparison of L and Ls was determined from 25 indications, obtained 
independently, of the difference in lengths of two standard gauge blocks, and equalled 13 nm 
[ISO/IEC Guide 98-3:2008, H.1.3.2]. 

9.5.2.3.2 Interpretation 

Assign a scaled and shifted t-distribution tν (µ, σ 2) (6.4.9.2 and 6.4.9.6) to D, with 

13215 nm, nm 6 nm, 24
5

µ σ ν= = = =  

9.5.2.4 Random effect d1 of comparator 

9.5.2.4.1 Information 

According to the calibration certificate of the comparator used to compare L with Ls, the associated uncertainty 
due to random effects is 0.01 µm for a coverage probability of 95 % and is obtained from six indications, 
obtained independently [ISO/IEC Guide 98-3:2008, H.1.3.2]. 

9.5.2.4.2 Interpretation 

Assign a scaled and shifted t-distribution tν (µ, σ 2) (6.4.9.7) to d1, with 

0 95

0 95

100 nm nm 4 nm 5
2 57

U
k

µ σ ν.

.
= , = = = , =

.
 

Here, k0.95 is obtained from Table G.2 of the GUM with ν = 5 degrees of freedom and p = 0.95. 

9.5.2.5 Systematic effect d2 of comparator 

9.5.2.5.1 Information 

The uncertainty of the comparator due to systematic effects is given in the certificate as 0.02 µm at the “three 
sigma level” [ISO/IEC Guide 98-3:2008, H.1.3.2]. This uncertainty may be assumed to be reliable to 25 %, and 
thus the degrees of freedom are eff 2( )( )u dν

︿
 = 8 [ISO/IEC Guide 98-3:2008, H.1.6]. 

9.5.2.5.2 Interpretation 

Assign a scaled and shifted t-distribution tν (µ, σ 2) (6.4.9.7) to d2, with 

200 nm, nm 7 nm, 8
3

p

p

U

k
µ σ ν= = = = =  
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9.5.2.6 Thermal expansion coefficient αs 

9.5.2.6.1 Information 

The coefficient of thermal expansion of the reference standard is given as sα
︿

 = 11.5 × 10−6 °C−1 with possible 
values of this quantity represented by a rectangular distribution with limits ± 2 × 10−6 °C−1 
[ISO/IEC Guide 98-3:2008, H.1.3.3]. 

9.5.2.6.2 Interpretation 

Assign a rectangular distribution R(a, b) (6.4.2) to αs, with limits 

6 1 6 19 5 10 C 13 5 10 Ca b− − − −= . × , = . ×o o  

NOTE There is no information about the reliability of the limits and so a rectangular distribution with exactly known 
limits is assigned. Such information may have been omitted from the description in the GUM because the corresponding 
sensitivity coefficient is zero, and so the quantity makes no contribution in an application of the GUM uncertainty 
framework based on first order terms only. 

9.5.2.7 Average temperature deviation θ0 

9.5.2.7.1 Information 

The temperature of the test bed is reported as (19.9 ± 0.5) °C. The average temperature deviation 

0θ
︿

 = −0.1 °C is reported as having an associated standard uncertainty due to the uncertainty associated with 
the average temperature of the test bed of ( )0u θ

︿
 = 0.2 °C [ISO/IEC Guide 98-3:2008, H.1.3.4]. 

9.5.2.7.2 Interpretation 

Assign a Gaussian distribution N(µ, σ 2) (6.4.7) to θ0, with 

0 1 C 0 2 Cµ σ= − . , = .o o  

NOTE There is no information about the source of the evaluation of the uncertainty and so a Gaussian distribution is 
assigned. Also see 9.5.2.6.2 Note, regarding such information. 

9.5.2.8 Effect ∆ of cyclic temperature variation 

9.5.2.8.1 Information 

The temperature of the test bed is reported as (19.9 ± 0.5) °C. The stated maximum offset of 0.5 °C for ∆ is 
said to represent the amplitude of an approximately cyclical variation of temperature under a thermostatic 
system. The cyclic variation of temperature results in a U-shaped (arc sine) distribution 
[ISO/IEC Guide 98-3:2008, H.1.3.4]. 

9.5.2.8.2 Interpretation 

Assign an arc sine distribution U(a, b) (6.4.6) to ∆, with limits 

0 5 C 0 5 Ca b= − . , = .o o  

NOTE There is no information about the reliability of the limits and so a U-shaped distribution with exactly known 
limits is assigned. As in 9.5.2.6.2 Note, such information may have been omitted from the description in the GUM. 
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9.5.2.9 Difference δα in expansion coefficients 

9.5.2.9.1 Information 

The estimated bounds on the variability of δα are ±1 × 10−6 °C−1, with an equal probability of δα having any 
value within those bounds [ISO/IEC Guide 98-3:2008, H.1.3.5]. These bounds are deemed to be reliable to 
10 %, giving ( )( )uν αδ

︿
 = 50 [ISO/IEC Guide 98-3:2008, H.1.6]. 

9.5.2.9.2 Interpretation 

Assign a rectangular distribution with inexactly prescribed limits (6.4.3) to δα, with 

6 1 6 1 6 11 0 10 C , 1 0 10 C , 0 1 10 Ca b d− − − − − −= − . × = . × = . ×o o o  

The stated reliability of 10 % on the estimated bounds provides the basis for this value of d. 

9.5.2.10 Difference δθ in temperatures 

9.5.2.10.1 Information 

The reference standard and the gauge block being calibrated are expected to be at the same temperature, but 
the temperature difference δθ could lie with equal probability anywhere in the estimated interval −0.05 °C to 
0.05 °C [ISO/IEC Guide 98-3:2008, H.1.3.6]. This difference is believed to be reliable only to 50 %, giving 

( )( )uν θδ
︿

 = 2 [ISO/IEC Guide 98-3:2008, H.1.6]. 

9.5.2.10.2 Interpretation 

Assign a rectangular distribution with inexactly prescribed limits (6.4.3) to δθ, with 

0 050 C, 0 050 C, 0 025 Ca b d= − . = . = .o o o  

The stated reliability of 50 % provides the basis for this value of d. 

9.5.3 Propagation and summarizing 

9.5.3.1 The GUM uncertainty framework 

The application of the GUM uncertainty framework is based on 

⎯ a first-order Taylor series approximation to the Model (36) or (37), 

⎯ use of the Welch-Satterthwaite formula to evaluate an effective degrees of freedom (rounded towards 
zero) associated with the uncertainty obtained from the law of propagation of uncertainty, and 

⎯ assigning a scaled and shifted t-distribution with the above degrees of freedom to the output quantity. 
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9.5.3.2 Monte Carlo method 

The application of MCM 

⎯ requires sampling from a rectangular distribution (6.4.2.4, C.3.3), Gaussian distribution (6.4.7.4, C.4), 
t-distribution (6.4.9.5, C.6), U-shaped distribution (6.4.6.4), and rectangular distribution with inexactly 
prescribed limits (6.4.3.4), and 

⎯ implements adaptive MCM (7.9) with a numerical tolerance (δ = 0.5) set to deliver ndig = 2 significant 
decimal digits in the standard uncertainty. 

9.5.4 Results 

9.5.4.1 Table 11 gives the results obtained for the approximate Model (37) using the information 
summarized in Table 10. Figure 17 shows the PDFs for δL obtained from the application of the GUM 
uncertainty framework (solid curve) and MCM (scaled frequency distribution). The distribution obtained from 
the GUM uncertainty framework is a t-distribution with ν = 16 degrees of freedom. The endpoints of the 
shortest 99 % coverage intervals for δL obtained from the PDFs, which are indicated as vertical lines, are 
visually indistinguishable. 

9.5.4.2 1.26 × 106 trials were taken by the adaptive Monte Carlo procedure. The calculations were also 
carried out for a coverage probability of 95 %, for which 0.53 × 106 trials were taken. 

Table 11 — Results obtained for the approximate Model (37) using the information summarized in 
Table 10 (9.5.4.1 and 9.5.4.3) 

Method / nmLδ
︿

 ( nm)/u Lδ
︿

 
Shortest 99 % coverage 

interval for δL /nm 

GUF 838 32 [745, 931] 
MCM 838 36 [745, 932] 

 

 
Key 
X Deviation of length of gauge block from nominal/nm 
Y Probability density/nm−1 

Figure 17 — PDFs for δL obtained using the GUM uncertainty framework (continuous bell-shaped 
curve) and MCM (scaled histogram) for the approximate Model (37) using the information summarized 

in Table 10 (9.5.4.1) 



ISO/IEC GUIDE 98-3/Suppl.1:2008(E) 

 

60  © ISO/IEC 2008 – All rights reserved
 

9.5.4.3 Results obtained for the non-linear Model (36) are identical to the results in Table 11 to the 
number of decimal digits given there. 

9.5.4.4 There are some modest differences in the results obtained. ( )u Lδ
 ︿

 was 4 nm greater for the 
application of MCM than for the GUM uncertainty framework. The length of the 99 % coverage interval for δL 
was 1 nm greater. These results apply equally to the non-linear and the approximate models. Whether such 
differences are important has to be judged in terms of the manner in which the results are to be used. 
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Annex A 
 

Historical perspective 

A.1 The GUM is a rich document, covering many aspects of uncertainty evaluation. Although it does not 
refer explicitly to the use of a Monte Carlo method, such use was recognized during the drafting of the GUM. 
The ISO/IEC/OIML/BIPM draft (First Edition) of June 1992, produced by ISO/TAG 4/WG 3, states [G.1.5]: 

If the relationship between Y and its input quantities is nonlinear, or if the values available for the 
parameters characterizing the probabilities of the Xi (expectation, variance, higher moments) are only 
estimates and are themselves characterized by probability distributions, and a first-order Taylor 
expansion of the relationship is not an acceptable approximation, the distribution of Y cannot be 
expressed as a convolution. In this case, a numerical approach (such as Monte Carlo calculations) will 
generally be required and the evaluation is computationally more difficult. 

A.2 In the published version of the GUM, this subclause had been modified to read: 

If the functional relationship between Y and its input quantities is nonlinear and a first-order Taylor 
expansion of the relationship is not an acceptable approximation (see 5.1.2 and 5.1.5), then the 
probability distribution of Y cannot be obtained by convolving the distributions of the input quantities. In 
such cases, other analytical or numerical methods are required. 

A.3 The interpretation made here of this re-wording is that “other analytical or numerical methods” cover 
any other appropriate approach. This interpretation is consistent with that of the National Institute of Standards 
and Technology of the United States [50]: 

[6.6] The NIST policy provides for exceptions as follows (see Annex C): 

It is understood that any valid statistical method that is technically justified under the existing 
circumstances may be used to determine the equivalent of ui, uc, or U. Further, it is recognized that 
international, national, or contractual agreements to which NIST is a party may occasionally require 
deviation from NIST policy. In both cases, the report of uncertainty must document what was done and 
why. 
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Annex B 
 

Sensitivity coefficients and uncertainty budgets 

B.1 Neither the propagation of distributions nor its implementation using MCM provides sensitivity 
coefficients [ISO/IEC Guide 98-3:2008, 5.1.3]. However, by holding all input quantities but one fixed at their 
best estimates, MCM can be used to provide the PDF for the output quantity for the model having just that 
input quantity as a variable [8]. The ratio of the standard deviation of the resulting model values (cf. 7.6) and 
the standard uncertainty associated with the best estimate of the relevant input quantity can be taken as a 
sensitivity coefficient. This ratio corresponds to that which would be obtained by taking all higher-order terms 
in the Taylor series expansion of the model into account. This approach may be viewed as a generalization of 
the approximate partial-derivative formula in the GUM [ISO/IEC Guide 98-3:2008, 5.1.3 Note 2]. Both the 
sensitivity coefficients and the contributions for each input quantity to the uncertainty associated with the 
estimate of the output quantity will in general differ from those obtained with the GUM. 

B.2 In many measurement contexts it is common practice to list the uncertainty components ui(y) =⏐ci⏐u(xi), 
i = 1,…, N, where ci is the ith sensitivity coefficient and u(xi) the standard uncertainty associated with the ith 
input estimate xi, contributing to the standard uncertainty u(y). Usually these are presented in a table, the 
“uncertainty budget”. This practice may be useful to identify the dominant terms contributing to u(y) associated 
with the estimate of the output quantity. However, in cases for which (a valid implementation of) the 
propagation of distributions is more appropriate, an uncertainty budget should be regarded as a qualitative 
tool. 
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Annex C 
 

Sampling from probability distributions 

C.1 General 

C.1.1 This annex provides technical information concerning sampling from probability distributions. Such 
sampling forms a central part of the use of MCM as an implementation of the propagation of distributions. A 
digital library of mathematical functions [38] and a repository of relevant software [37] may also be consulted. 

C.1.2 A generator for any distribution, such as the distributions considered in Subclause 6.4 (also see 
Table 1), can in principle be obtained from its distribution function, together with the use of a generator for the 
rectangular distribution, as indicated in Clause C.2. A generator for a rectangular distribution is provided in 
C.3.3. For some distributions, such as the Gaussian distribution and the t-distribution, it is more efficient to use 
specifically developed generators, such as those provided in this annex. Subclause 6.4 also gives advice on 
sampling from probability distributions. 

NOTE Generators other than those given in this annex can be used. Their statistical quality should be tested before 
use. A testing facility is available for pseudo-random number generators for the rectangular distribution. See C.3.2. 

C.2 General distributions 

A draw from any strictly increasing, univariate continuous distribution function GX(ξ) can be made by 
transforming a draw from a rectangular distribution: 

a) draw a random number ρ from the rectangular distribution R(0, 1); 

b) determine ξ satisfying GX(ξ) = ρ. 

NOTE 1 The inversion required in step b), that is forming ( )1 ,XGξ ρ−=  may be possible analytically. Otherwise it can 
be carried out numerically. 

EXAMPLE As an instance of analytical inversion, consider the exponential PDF for X, with X having expectation 
x (> 0), viz. gX (ξ) = exp(−ξ /x)/x, for ξ W 0, and zero otherwise (6.4.10). Then, by integration, GX(ξ) = 1 − exp(−ξ /x), for 
ξ W 0, and zero otherwise. Hence ξ = −x ln(1 − ρ). This result can be simplified slightly by using the fact that if a variable Q 
has the rectangular distribution R(0, 1), then so has 1 − Q. Hence, ξ = −x ln ρ. 

NOTE 2 Numerically, ξ can generally be determined by solving the “zero-of-a-function” problem GX 
(ξ) − ρ = 0. Upper 

and lower bounds for ξ are typically easily found, in which case a recognized “bracketing” algorithm such as bisection or, 
more efficiently, a combination of linear interpolation and bisection [11], for example, can be used to determine ξ. 

NOTE 3 If the pseudo-random number generator for the rectangular distribution is to be used as a basis for generating 
numbers from another distribution, a draw of ρ equal to zero or one can cause failure of that generator. An example is the 
exponential distribution (6.4.10). Its PDF [Expression (9)] is not defined for ρ equal to zero or one. The use of the 
generator given in C.3.3 would not give rise to a failure of that type. 
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C.3 Rectangular distribution 

C.3.1 General 

C.3.1.1 The ability to generate pseudo-random numbers from a rectangular distribution is fundamental in 
its own right, and also as the basis for generating pseudo-random numbers from any distribution 
(Clauses C.2, C.4, C.6) using an appropriate algorithm or formula. In the latter regard, the quality of the 
numbers generated from a non-rectangular distribution depends on that of the generator of numbers from a 
rectangular distribution and on the properties of the algorithm employed. The quality of the numbers 
generated from a non-rectangular distribution can therefore be expected to be related to those generated from 
the rectangular distribution. Only a generator that can faithfully provide rectangularly distributed numbers used 
in conjunction with a good algorithm can be expected to constitute a generator that can faithfully provide non-
rectangularly distributed numbers. 

C.3.1.2 It is thus important that the underlying facility for generating rectangularly distributed numbers is 
sound [31]. Unless the user is sure of its pedigree, a generator should not be used until adequate testing has 
been carried out. Misleading results can otherwise be obtained. The use of a testing facility [30] is 
recommended. A procedure for generating rectangularly distributed numbers, which has been shown to 
perform well in these tests and is straightforward to implement, is given in C.3.3. 

C.3.1.3 Table C.1 defines relevant aspects of the functioning of a procedure for generating pseudo-
random numbers from the rectangular distribution R(0, 1), specifying the input, input-output and output 
parameters associated with their determination. 

NOTE 1 By setting the seeds in Table C.1 to seeds previously used, the same sequence of random numbers can be 
produced. Doing so is important as part of software regression testing, used to verify the consistency of results produced 
using the software with those from previous versions. 

NOTE 2 Some pseudo-random number generators provide a single draw at each call and others several draws. 

Table C.1 — Generation of pseudo-random numbers from a rectangular distribution 
(C.3.1.3 and C.3.2.2) 

Input parameter 

q Number of pseudo-random numbers to be generated 

Input-output parameter 

t Column vector of parameters, some of which may be required as input 
quantities, that may be changed as part of the computation. Subsequent 
values of these parameters are not usually of immediate concern to the user. 
The parameters are needed to help control the process by which the pseudo-
random numbers are generated. The parameters may be realized as global 
variables and thus not explicitly appear as parameters of the procedure. One 
or more of these parameters may be a seed, used to initiate the sequence of 
random numbers produced by successive calls of the procedure 

Output parameter 

z Column vector of q draws from the rectangular distribution R(0, 1) 

 

C.3.1.4 A pseudo-random number x drawn from R(a, b) is given by a + (b − a)z, where z is a pseudo-
random number drawn from R(0, 1). 

C.3.2 Randomness tests 

C.3.2.1 Any pseudo-random number generator used should 

a) have good statistical properties, 
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b) readily be implemented in any programming language, and 

c) give the same results for the same seed on any computer. 

It is also desirable that it is compact, thus rendering its implementation straightforward. One such generator 
that comes close to satisfying these requirements is the Wichmann and Hill generator [52, 53]. It has been 
used in many areas including uncertainty computations. However, its cycle length (the number of random 
numbers generated before the sequence is repeated) is 231, today considered inadequate for some problems. 
Moreover, not all tests of its statistical properties were passed [35]. Further, the generator was designed for 
16-bit computers, whereas today 32-bit and 64-bit computers are almost universally used. 

NOTE The period of the sequence of numbers produced by a pseudo-random number generator is the number of 
consecutive numbers in the sequence before they are repeated. 

C.3.2.2 An extensive test of the statistical properties of any generator submitted to it is carried out by the 
test suite TestU01 [30]. This suite is very detailed, with many individual tests, including the so-called Big 
Crush. Several generators passing the Big Crush test are listed by Wichmann and Hill [54]. An enhanced 
Wichmann-Hill generator (C.3.3) also passes the test, and has the following properties [54]: 

a) it is straightforward to code in any programming language. It does not depend upon bit manipulation used 
by some generators, 

b) the state (the amount of information preserved by the generator between calls to it) is small and easy to 
handle (cf. the parameter t in Table C.1), 

c) it can readily be used to provide multiple sequences needed for highly parallel applications, likely to be a 
feature of future uncertainty calculations, and 

d) there are variants of the generator for 32- and 64-bit computers. 

C.3.3 Procedure for generating pseudo-random numbers from a rectangular distribution 

C.3.3.1 Like the previous generator, the enhanced Wichmann-Hill generator is a combination of 
congruential generators. The new generator combines four such generators, whereas the previous version 
combined three. The new generator has a period of 2121, acceptable for any conceivable application. 

C.3.3.2 Table C.2 defines the enhanced Wichmann-Hill generator for producing pseudo-random numbers 
from R(0, 1) for a 32-bit computer. 

C.3.3.3 For 64-bit computers, step a) of the Computation, including i) and ii), in the generator of Table C.2 
is to be replaced by the simpler step: 

a) For j = 1,…, 4, form ij = (aj × ij) mod dj 

C.4 Gaussian distribution 

The procedure in Table C.3 provides draws from the standard Gaussian distribution N(0, 1) using the Box-
Muller transform [3]. A draw from the Gaussian distribution N(µ, σ 

2) is given by µ + σ z, where z is a draw from 
N(0, 1). 
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Table C.2 — The enhanced Wichmann-Hill generator for pseudo-random numbers (C.3.3.2 and C.3.3.3) 
from a rectangular distribution on the interval (0, 1) for 32-bit computers 

Input parameter 

 None 

Input-output parameter 

i1, 
i2, 
i3, 
i4 

Integer parameters required as input quantities and that are changed by the 
procedure. Set to integers between 1 and 2 147 483 647 before the first call. Do 
not disturb between calls. Subsequent values of these parameters are not usually 
of concern to the user. The parameters provide the basis by which the pseudo-
random numbers are generated. They may be realized as global variables and 
thus not appear explicitly as parameters of the procedure 

Constant 

a, 
b, 
c, 
d 

Vectors of integer constants of dimension 4, where a = (a1,…,a4)T, etc., given by: 
aT = (11 600, 47 003, 23 000, 33 000), 
bT = (185 127, 45 688, 93 368, 65 075), 
cT = (10 379, 10 479 , 19 423, 8 123), 
dT = 2 147 483 123 × (1, 1, 1, 1) + (456, 420, 300, 0). 
Do not disturb between calls 

Output parameter 

r Pseudo-random number drawn from R(0, 1) 

Computation 

 a)   For j = 1,…, 4: 
      i) Form ij = aj × (ij mod bj) − cj × ⎣ij /bj ⎦ 
      ii) If ij < 0, replace ij by ij + dj 

b)   Form 4
1 j jj

w i d
=

=∑  

c)   Form r = w − ⎣w⎦ 

NOTE ⎣w⎦ denotes the largest integer no greater than w. 

ij mod bj denotes the remainder on division of ij by bj. 

 

Table C.3 — The Box-Muller Gaussian pseudo-random number generator (Clause C.4) 

Input parameter 

 None 

Output parameter 

z1, 
z2 

Two draws, obtained independently, from a standard Gaussian distribution 

Computation 

 a)   Generate random draws r1 and r2 independently from the rectangular 
distribution R(0, 1) 

b)   Form 1 1 22ln cos2z r r= − π  and 2 1 22ln sin2z r r= − π  

 

C.5 Multivariate Gaussian distribution 

C.5.1 The most important multivariate distribution is the multivariate (or joint) Gaussian distribution N(µ, V), 
where µ is an n × 1 vector of expectations and V a covariance matrix of order n. 
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C.5.2 Draws from N( µ, V) [45, 49] can be obtained using the procedure in Table C.4. 

NOTE 1 If V is positive definite (i.e. all its eigenvalues are strictly positive), the Cholesky factor R is unique [23, 
page 204]. 

NOTE 2 If V is not positive definite, perhaps because of numerical rounding errors or other sources, R may not exist. 
Moreover, in cases where one or more of the eigenvalues of V is very small (but positive), the software implementation of 
the Cholesky factorization algorithm used may be unable to form R because of the effects of floating-point errors. In either 
of these situations it is recommended that V is “repaired”, i.e. as small a change as possible is made to V such that the 
Cholesky factor R for the modified matrix is well defined. The resulting factor is exact for a covariance matrix that 
numerically is close to the original V. A simple repair procedure is available [49, page 322] for this purpose, and is 
embodied in the MULTNORM generator [45]. 

NOTE 3 If V is semi-positive definite, the eigendecomposition V = QΛQT, where Q is an orthogonal matrix and Λ a 
diagonal matrix, can be formed. Then Λ½QT can be used to obtain draws from N(0, V), even if V is rank deficient. 

Table C.4 — A multivariate Gaussian random number generator (C.5.2) 

Input parameter 

n 
µ 
V 
q 

Dimension of the multivariate Gaussian distribution 
n × 1 vector of expectations 
Covariance matrix of order n 
Number of multivariate Gaussian pseudo-random numbers to be generated 

Output parameter 

X n × q matrix, the jth column of which is a draw from the multivariate Gaussian 
distribution 

Computation 

 a)   Form the Cholesky factor R of V, i.e. the upper triangular matrix satisfying 
V = RTR. (To generate q pseudo-random numbers, it is necessary to perform this 
matrix factorization only once.) 

b)   Generate an n × q array Z of standard Gaussian variates 

c)   Form 
T T= +X R Zµ1  

where 1 denotes a column vector of q ones 

 

C.5.3 Figure C.1 shows 200 points generated using the MULTNORM generator [45] from N(µ, V), where 

2 0 2 0 1 9
3 0 1 9 2 0

. . .⎡ ⎤ ⎡ ⎤= , =⎢ ⎥ ⎢ ⎥. . .⎣ ⎦ ⎣ ⎦
Vµ  

i.e. in which the two quantities concerned are positively correlated. Similar generators are available 
elsewhere [12]. 

C.5.4 In Figure C.1, the points span an elongated angled ellipse. Were the off-diagonal elements of V to be 
replaced by zero, the points would span a circle. Were the diagonal elements made unequal, and the off-
diagonal elements kept at zero, the points would span an ellipse whose axes were parallel to the axes of the 
graph. If the diagonal elements were negative, and hence the quantities concerned negatively correlated, the 
major axis of the ellipse would have a negative rather than a positive gradient. 

C.6 t-distribution 

The procedure in Table C.5 provides an approach [29], [44, page 63] to obtain draws from the t-distribution 
with ν  degrees of freedom. 
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Key 

X Quantity 1/unit 
Y Quantity 2/unit 
“Unit” denotes any unit. 

Figure C.1 — Points sampled from a bivariate Gaussian distribution with positive correlation 
(C.5.3 and C.5.4) 

 

Table C.5 — A t-distribution pseudo-random number generator (Clause C.6) 

Input parameter 

ν Degrees of freedom 

Output parameter 

t Draw from a t-distribution with ν degrees of freedom 

Computation 

 a)   Generate two draws r1 and r2 independently from the rectangular distribution 
R(0, 1) 

b)   If r1 < 1/2, form t = 1/(4r1 − 1) and ν = r2 / t 
2; otherwise form t = 4r1 − 3 and ν = r2 

c)   If ν < 1 −⏐t⏐/ 2 or ν < (1 + t 
2/ν )−(ν + 1)/2, accept t as a draw from the t-distribution; 

otherwise repeat from step a) 

 

NOTE ν must be greater than two for the standard deviation of the t-distribution with ν degrees of freedom to be 
finite. 



ISO/IEC GUIDE 98-3/Suppl.1:2008(E) 

 

© ISO/IEC 2008 – All rights reserved  69
 

Annex D 
 

Continuous approximation to the distribution function for the output 
quantity 

D.1 It is sometimes useful to work with a continuous approximation G~Y 
(η), say, to the distribution function 

for the output quantity Y, rather than the discrete representation G of 7.5. 

NOTE Working with a continuous approximation means, for instance, that 

a) sampling from the distribution function can be carried out without the need for rounding, as in the discrete case, and 

b) numerical methods that require continuity for their operation can be used to determine the shortest coverage interval. 

D.2 In order to form G~Y 
(η), consider the discrete representation G = {y(r), r = 1,…, M} of GY 

(η) in 7.5.1, after 
replacing replicate model values of y(r) as necessary [step b) in that subclause]. Then, carry out the following 
steps: 

a) assign uniformly spaced cumulative probabilities pr = (r − 1/2)/M, r = 1,…, M, to the y(r) [8]. The numerical 
values pr, r = 1,…, M, are the midpoints of M contiguous probability intervals of width 1/M between zero 
and one; 

b) form G~Y 
(η) as the (continuous) strictly increasing piecewise-linear function joining the M points (y(r), pr), 

r = 1,…, M: 

G~Y (η) ( )
( ) ( 1)

( 1) ( )

1 2 , 1 1
( )

r
r r

r r

yr y y r … M
M M y y

η
η +

+

−− /= + , = , , −
−

u u  (D.1) 

NOTE The form of Expression (D.1) provides a convenient basis for sampling from G~Y 
(η) for purposes of a further 

stage of uncertainty evaluation. See Clause C.2 for sampling inversely from a distribution function. Some software libraries 
and packages provide facilities for piecewise-linear interpolation. Since G~Y 

(η) is piecewise linear, so is its inverse, and 
such facilities can readily be applied. 

D.3 Figure D.1 illustrates G~Y 
(η) obtained using MCM based on M = 50 sampled values from a Gaussian 

PDF gY 
(η) with Y having expectation 3 and standard deviation 1. 



ISO/IEC GUIDE 98-3/Suppl.1:2008(E) 

 

70  © ISO/IEC 2008 – All rights reserved
 

 

Key 

X Output quantity Y/unit 
Y Probability 
“Unit” denotes any unit. 

Figure D.1 — An approximation G~Y 
(η) to the distribution function GY (η) (Clause D.3) 

D.4 Consider ~gY 
(η) =  G~'Y 

(η) with G~Y 
(η) given in Expression (D.1). The function ~gY 

(η) is piecewise constant 
with breakpoints at η = y(1),…, y(M). The expectation ~y and standard deviation u(~y) of Y, described by ~gY 

(η) are 
taken, respectively, as an estimate of Y and the standard uncertainty associated with that estimate. ~y and u(~y) 
are given by 

~y ( )
1

1  
M

r
r

y
M =

= ″∑  (D.2) 

and 

u2(~y) 
1

1 M

rM =

⎛
⎜=  ″
⎜
⎝
∑ (y(r) − ~y)2

1
2

( 1) ( )
1

1 ( )
6

M

r r
r

y y
−

+
=

⎞
⎟− −
⎟
⎠

∑  (D.3) 

where the double prime on a summation symbol indicates that the first and the last terms in the sum are to be 
taken with weight one half. 

NOTE For a sufficiently large numerical value of M (105, say, or greater), ~y and u(~y) obtained using Formulae (D.2) 
and (D.3) would generally be indistinguishable for practical purposes from those given by Formulae (16) and (17), 
respectively. 

D.5 Let α denote any value between zero and 1 − p, where p is the required coverage probability (e.g. 
0.95). The endpoints of a 100p % coverage interval can be obtained from G~(η) by inverse linear interpolation. 
To determine the lower endpoint ylow such that α = G~Y 

(ylow), identify the index r for which the points (y(r), pr) 
and (y(r+1), pr+1) satisfy 

1r rp pα +<u  
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Then, by inverse linear interpolation, 

( )low ( ) ( 1) ( )
1

r
r r r

r r

p
y y y y

p p
α

+
+

−
= + −

−
 

Similarly, the upper endpoint yhigh, determined such that p + α =  G~Y 
(yhigh), is calculated from 

( )high ( ) ( 1) ( )
1

s
s s s

s s

p p
y y y y

p p
α

+
+

+ −
= + −

−
 

where the index s is such that the points (y(s), ps) and (y(s+1), ps+1) satisfy 

1s sp p pα ++ <u  

D.6 The choice α = 0.025 gives the coverage interval defined by the 0.025- and 0.975-quantiles. This choice 
provides the probabilistically symmetric 95 % coverage interval for Y. 

D.7 The shortest coverage interval can generally be obtained from G~Y (η) by determining α such that 
G~ ( )1

Y ρ α− +  − G~ ( )1
Y α− , = H(α), say, is a minimum. A straightforward numerical approach to determining the 

minimum is to evaluate H(α) for a large number of uniformly spaced choices {αk} of α between zero and 
1 − p, and choose αℓ from the set {αk} that yields the minimum from the set {H(αk)}. 

D.8 The computation of a coverage interval is facilitated if pM is an integer. Then, the numerical value of α, 
such that H(α) is a minimum, is equal to r*/M, where r* is the index r such that the interval length y(r+pM) − y(r), 
over r = 1,…, (1 − p)M, is least. 
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Annex E 
 

Coverage interval for the four-fold convolution of a rectangular 
distribution 

E.1 In 9.2.3.2, the analytic solution 

1 42 3[2 (3 5) ] 3 88/± − ≈ ± .  (E.1) 

is stated. It constitutes the endpoints of the probabilistically symmetric 95 % coverage interval for the output 
quantity Y in an additive model having four input quantities with expectations of zero and standard deviations 
of unity, the PDFs for which are identical rectangular distributions. This result is established in this annex. 

E.2 The rectangular distribution R(a, b) (6.4.2) takes the constant value (b − a)−1 for a u ρ u b and is zero 
otherwise. The n-fold convolution of R(0, 1) is the B-spline Bn(ρ) of order n (degree n − 1) with knots 
0, …, n [46]. An explicit expression is 

1

0

1( ) ( 1) ( )
( 1)

n
n r n

n r
r

B C r
n

ρ ρ −
+

=
= − −

− !∑  

where 

, max( , 0)
( )

n
r

nC z z
r n r +

!= =
! − !

 

In particular, 

3
4

1( ) , 0 1
6

B ρ ρ ρ= u u  

(with different cubic polynomial expressions for B4(ρ) in other intervals between adjacent knots), and hence 

11 4
40 0

1 1( )d 0 0417
24 24

B ρ ρ ρ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= = ≈ .∫  

For further information, see Reference [6]. 

E.3 The left-hand endpoint, ylow, of the probabilistically symmetric 95 % coverage interval lies between zero 
and one, since 

1 10 025
40 24

. = <  

of the area under the PDF lies to the left of ylow, which is therefore given by 

low 4
4 low0

1 1( )d
24 40

y
B yρ ρ = =∫  

i.e. 

1 4
low (3 5)y /=  
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By symmetry, the right-hand endpoint is 

1 4
high 4 (3 5)y /= −  

Thus, the probabilistically symmetric 95 % coverage interval is 

1 4 1 4 1 4(3 5) , 4 (3 5) 2 2 (3 5)/ / /⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

− ≡ ± −  

The corresponding coverage interval for the four-fold convolution of the rectangular PDF ( 3, 3 )R −  (which 
has zero expectation and unit standard deviation) is given by shifting this result by two units and scaling it by 
2 3  units, yielding Expression (E.1). 
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Annex F 
 

Comparison loss problem 

This annex is concerned with some details of the comparison loss problem (9.4). Clause F.1 provides the 
expectation and standard deviation of δY (9.4.2.1.2). Clause F.2 provides the PDF for δY analytically when 
x1 = x2 = r(x1, x2) = 0 (9.4.2.1.2). Clause F.3 applies the GUM uncertainty framework for uncorrelated and 
correlated input quantities (9.4.2.1.3, 9.4.3.1.1). 

F.1 Expectation and standard deviation obtained analytically 

F.1.1 The variance of a quantity X can be expressed in terms of expectations as [42, page 124] 

2 2( ) ( ) [ ( )]V X E X E X= −  

Thus, 

2 2 2 2( ) [ ( )] ( ) ( )E X E X V X x u x= + = +  

where x is the best estimate of X and u(x) the standard uncertainty associated with x. Thus, for the Model (28), 
δY = 1 − Y = 2 2

1 2 ,X X+  

2 2 2 2
1 2 1 2( ) ( ) ( )y E Y x x u x u xδ = δ = + + +  

This result applies 

a) regardless of which PDFs are assigned to X1 and X2 and 

b) whether X1 and X2 are independent or not. 

F.1.2 The standard uncertainty associated with δY can be obtained from 

2 2 2 2 2 2 2
1 2 1 2( ) ( ) ( ) 2 ( , )u y u x u x u x xδ = + +  

where, for i = 1 and i = 2, u2( 2
ix ) = V( 2

iX ), and u( 2 2
1 2,x x ) = Cov( 2 2

1 2,X X ). Then, applying Price’s Theorem for 
Gaussian distributions [40, 41], 

2 2 2 2 2 4 4 2
1 1 2 2 1 2 1 2 1 2 1 2( ) 4 ( ) 4 ( ) 2 ( ) 2 ( ) 4 ( , ) 8 ( , )u y u x x u x x u x u x u x x u x x x xδ = + + + + +  (F.1) 

When x2 = 0 and u(x2) = u(x1), and replacing u(x1, x2) by r(x1, x2)u2(x1), 

{ }1 22 2 2
11 1 2 1( ) 2 ( )[1 ( , )] ( )u y u xx r x x u x

/
δ = + +  

F.1.3 When X1 and X2 are uncorrelated, i.e. u(x1, x2) = 0, Expression (F.1) becomes 

2 2 2 2 2 4 4
1 1 2 2 1 2( ) 4 ( ) 4 ( ) 2 ( ) 2 ( )u y u x x u x x u x u xδ = + + +  (F.2) 
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Expression (F.2) can be verified by applying Formula (10) of the GUM [ISO/IEC Guide 98-3:2008, 5.1.2] and 
the immediately following GUM formula [ISO/IEC Guide 98-3:2008, 5.1.2 Note]. 

F.2 Analytic solution for zero estimate of the voltage reflection coefficient having 
associated zero covariance 

F.2.1 For the case x1 = x2 = r(x1, x2) = 0 and u(x1) = u(x2), the PDF gY (η) for Y can be obtained analytically. It 
is valuable to have such a solution for further validation purposes. In the above circumstances, 

2 2
2 1 2

1 2 2
1 2

( )
( ) ( )

X X
Y u x

u x u x

⎡ ⎤
δ = +⎢ ⎥

⎢ ⎥⎣ ⎦
 

F.2.2 The term in square brackets is the sum, Z, say, of the squares of two independent quantities, each of 
which is distributed as a standard Gaussian PDF. Thus the sum is distributed as chi-squared with two degrees 
of freedom [42, page 177], so that 

2
1( )Y u x Zδ =  

where Z has PDF 

2 2
2( ) ( ) e 2Z

zg z z −= χ =  

F.2.3 The application of a general formula [42, pages 57–61] for the PDF gY (η) of a differentiable and 
strictly decreasing function of a variable (here Z) with a specified PDF yields 

2
22 2 2 2

1 1 1 1

1 1( ) exp , 0
( ) ( ) 2 ( ) 2 ( )

Yg
u x u x u x u x

η ηη η
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= χ = −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

W  

F.2.4 The expectation of δY is given by 

2
10

( ) ( ) d 2 ( )Yy E Y g u xη η η
∞

δ = δ = =∫  

and the variance 

2 2 4
10

( ) ( ) ( ) ( )d 4 ( )Yu y V Y y g u xη η η
∞

δ = δ = − =∫  

i.e. the standard deviation is 2u2(x1), results that are consistent with those in Clause F.1. 

F.2.5 By integration, the corresponding distribution function is 

2
1

( ) 1 exp , 0
2 ( )

YG
u x

ηη η
⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

W  (F.3) 

F.2.6 Let δyα be that η in Expression (F.3) corresponding to GY (η) = α for any α satisfying 0 u α  u 1 − p. 
Then 

2
12 ( )ln(1 )y u xα αδ = − −  

and a 100p % coverage interval for δY (7.7) is 

2 2
1 1[ , ] [ 2 ( ) ln (1 ), 2 ( ) ln (1 )]py y u x u x pα α α α+δ δ ≡ − − − − −  (F.4) 
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with length 

2
1( ) 2 ( ) ln 1

1
pH u xα
α

⎛ ⎞= − −⎜ ⎟−⎝ ⎠
 

F.2.7 The shortest 100p % coverage interval is given by determining α to minimize H(α) (5.3.4). Since H(α) 
is a strictly increasing function of α for 0 u α u 1 − p, H(α) is minimized when α = 0. Thus, the shortest 
100p % coverage interval for δY is 

2
1[0 2 ( ) ln (1 )]u x p, − −  

For u(x1) = 0.005, the shortest 95 % coverage interval is 

[0 0 000 149 8], .  

F.2.8 The 95 % probabilistically symmetric coverage interval for δY is given by setting α = (1 − p)/2 (5.3.3), 
i.e. 

2 2
1 1[ 2 ( ) ln 0 975, 2 ( ) ln 0 025] [0.000 0013, 0.000 184 4]u x u x− . − . =  

which is 20 % longer than the shortest 95 % coverage interval. 

NOTE The above analysis is indicative of an analytical approach that can be applied to some problems of this type. 
In this particular case, the results could in fact have been obtained more directly, since gY (η) is strictly increasing and the 
shortest coverage interval is always in the region of highest density. 

F.3 GUM uncertainty framework applied to the comparison loss problem 

F.3.1 Uncorrelated input quantities 

F.3.1.1 The comparison loss problem considered in 9.4 has as the model of measurement 

2 2
1 2 1 2( ) ( )Y f f X X X Xδ = = , = +X  

where X1 and X2 are assigned Gaussian PDFs having expectations x1 and x2 and variances u2(x1) and u2(x2), 
respectively. 

F.3.1.2 The application of ISO/IEC Guide 98-3:2008, 5.1.1 gives 

2 2
1 2y x xδ = +  

as the estimate of δY. The only non-trivially non-zero partial derivatives of the model are, for i = 1, 2, 

2

22 2i
i i

f fX
X X
∂ ∂= , =

∂ ∂
 

F.3.1.3 Hence the application of ISO/IEC Guide 98-3:2008, 5.1.2 gives, for the standard uncertainty u(δy), 

2 2
2 2 2 2 2 2 2

1 2 1 1 2 2
1 2

( ) ( ) ( ) 4 ( ) 4 ( )f fu y u x u x x u x x u x
X X

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥δ = + = +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ X x=

 (F.5) 



ISO/IEC GUIDE 98-3/Suppl.1:2008(E) 

 

© ISO/IEC 2008 – All rights reserved  77
 

based on a first-order Taylor series approximation of f (X). If the non-linearity of f is significant 
[ISO/IEC Guide 98-3:2008, 5.1.2 Note], the term 

2 2
2 2

1 22 2
1 2

1 ( ) ( )
2

f f u x u x
X X

⎡ ⎤∂ ∂+⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦ X x=

 

needs to be appended to Formula (F.5), in which case Formula (F.5) becomes 

2 2 2 2 2 2 2
1 1 2 2 1 2( ) 4 ( ) 4 ( ) 4 ( ) ( )u y x u x x u x u x u xδ = + +  (F.6) 

F.3.1.4 A 95 % coverage interval for δY is given by 

2 ( )y u yδ ± δ  

as a consequence of δY having a Gaussian PDF. 

F.3.2 Correlated input quantities 

F.3.2.1 When the input quantities are correlated, the uncertainty matrix for the best estimates of the input 
quantities is given in Formulae (27). 

F.3.2.2 The application of ISO/IEC Guide 98-3:2008, 5.2.2 gives 

2 2
2 2 2

1 2 1 2 1 2
1 2 1 2

( ) ( ) ( ) 2 ( ) ( ) ( )f f f fu y u x u x r x x u x u x
X X X X

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥δ = + + ,⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ X x=

 

2 2 2 2
1 1 2 2 1 2 1 2 1 24 ( ) 4 ( ) 8 ( ) ( ) ( )x u x x u x r x x x x u x u x= + + ,  (F.7) 
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Annex G 
 

Glossary of principal symbols 

A random variable representing the lower limit of a rectangular distribution with inexactly 
prescribed limits 

a lower limit of the interval in which a random variable is known to lie 

a midpoint of the interval in which the lower limit A of a rectangular distribution with inexactly 
prescribed limits is known to lie 

B random variable representing the upper limit of a rectangular distribution with inexactly 
prescribed limits 

b upper limit of the interval in which a random variable is known to lie 

b midpoint of the interval in which the upper limit B of a rectangular distribution with inexactly 
prescribed limits is known to lie 

CTrap(a, b, d) rectangular distribution with inexactly prescribed limits (curvilinear trapezoid distribution) with 
parameters a, b, and d 

Cov(Xi, Xj) covariance for two random variables Xi and Xj 

c ndig-decimal digit integer 

ci ith sensitivity coefficient, obtained as the partial derivative of the model f for the measurement 
with respect to the ith input quantity Xi evaluated at the vector estimate x of the vector input 
quantity X 

d semi-width of the intervals in which the lower and upper limits A and B of a rectangular 
distribution with inexactly prescribed limits are known to lie 

dhigh absolute value of the difference between the right-hand endpoints of the coverage intervals 
provided by the GUM uncertainty framework and a Monte Carlo method 

dlow absolute value of the difference between the left-hand endpoints of the coverage intervals 
provided by the GUM uncertainty framework and a Monte Carlo method 

E(X) expectation of a random variable X 

E(X) vector expectation of a vector random variable X 

E(Xr) rth moment of a random variable X 

Ex(λ) exponential distribution with parameter λ 

f mathematical model of measurement, expressed as a functional relationship between an 
output quantity Y and the input quantities X1,…,XN on which Y depends 

G discrete representation of the distribution function GY (η) for the output quantity Y from a 
Monte Carlo procedure 
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G(α, β )  gamma distribution with parameters α and β 

gX (ξ ) probability density function with variable ξ for the input quantity X 

gX (ξ ) joint (multivariate) probability density function with vector variable ξ for the vector input 
quantity X 

gXi
(ξi) probability density function with variable ξi for the input quantity Xi 

GY (η) distribution function with variable η for the output quantity Y 

G~Y (η) continuous approximation to the distribution function GY (η) for the output quantity Y 

gY (η) probability density function with variable η for the output quantity Y 

~gY (η) derivative of G~Y (η) with respect to η, providing a numerical approximation to the probability 
density function gY (η) for the output quantity Y 

J smallest integer greater than or equal to 100/(1 − p) 

kp coverage factor corresponding to the coverage probability p 

ℓ integer in the representation c × 10ℓ of a numerical value, where c is an ndig-decimal digit 
integer 

M number of Monte Carlo trials 

N number of input quantities X1,…, XN 

N(0, 1) standard Gaussian distribution 

N(µ, σ 2) Gaussian distribution with parameters µ and σ 
2 

N(µ, V) multivariate Gaussian distribution with parameters µ and V 

n number of indications in a series 

ndig number of significant decimal digits regarded as meaningful in a numerical value 

Pr(z) probability of the event z 

p coverage probability 

q integer part of pM + 1/2 

q number of objects counted in a sample of specified size 

R upper triangular matrix 

R(0, 1) standard rectangular distribution over the interval [0, 1] 

R(a, b) rectangular distribution over the interval [a, b] 

r(xi, xj) correlation coefficient associated with the estimates xi and xj of the input quantities Xi and Xj 
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s standard deviation of a series of n indications x1,…, xn 

sp pooled standard deviation obtained from several series of indications 

T superscript denoting matrix transpose 

sz standard deviation associated with the average z of the values z(1),…, z(h) in an adaptive 
Monte Carlo procedure, where z may denote an estimate y of the output quantity Y, the 
standard uncertainty u(y) associated with y, or the left-hand endpoint ylow or right-hand 
endpoint yhigh of a coverage interval for Y 

T(a, b) triangular distribution over the interval [a, b] 

Trap(a, b, β) trapezoidal distribution over the interval [a, b] with parameter β 

tν central t-distribution with ν degrees of freedom 

tν (µ, σ 
2) scaled and shifted t-distribution with parameters µ and σ 

2, and ν degrees of freedom 

U(0, 1) standard arc sine (U-shaped) distribution over the interval [0, 1] 

U(a, b) arc sine (U-shaped) distribution over the interval [a, b] 

Up expanded uncertainty corresponding to a coverage probability p 

Ux uncertainty matrix associated with the vector estimate x of the vector input quantity X 

u(x) vector [u(x1),…,u(xN)]T of standard uncertainties associated with the vector estimate x of the 
vector input quantity X 

u(xi) standard uncertainty associated with the estimate xi of the input quantity Xi 

u(xi, xj) covariance associated with the estimates xi and xj of the input quantities Xi and Xj 

u(y) standard uncertainty associated with the estimate y of the output quantity Y 

u( ~y ) standard uncertainty associated with ~y  

uc(y) combined standard uncertainty associated with the estimate y of the output quantity Y 

ui(y) ith uncertainty component of the standard uncertainty u(y) associated with the estimate y of 
the output quantity Y 

V covariance (variance-covariance) matrix 

V (X) variance of a random variable X 

V (X) covariance matrix for the vector random variable X 

w semi-width (b − a)/2 of an interval [a, b] 

X input quantity, regarded as a random variable 

X vector (X1,…, XN)T of input quantities, regarded as random variables, on which the output 
quantity Y depends 
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Xi ith input quantity, regarded as a random variable, on which the output quantity Y depends 

x estimate (expectation) of X 

x vector estimate (vector expectation) (x1,…, xN)T of X 

x  average of a series of n indications x1,…, xn 

xi estimate (expectation) of Xi 

xi ith indication in a series 

xi,r rth Monte Carlo draw from the probability density function for Xi 

xr rth Monte Carlo draw, containing values x1,r,…, xN,r, drawn from the probability density 
functions for the N input quantities X1,…, XN or from the joint probability density function for X 

Y (scalar) output quantity, regarded as a random variable 

y estimate (expectation) of Y 

~y estimate of Y, obtained as the average of the M model values yr from a Monte Carlo run or as 
the expectation of Y characterized by the probability density function ~gY 

(η) 

yhigh right-hand endpoint of a coverage interval for Y 

ylow left-hand endpoint of a coverage interval for Y 

yr rth model value f (xr) 

y(r) rth model value after sorting the yr into increasing order 

z(h) hth value in an adaptive Monte Carlo procedure, where z may denote an estimate y of the 
output quantity Y, the standard uncertainty u(y) associated with y, or the left-hand endpoint 
ylow or right-hand endpoint yhigh of a coverage interval for Y 

α probability value 

α parameter of a gamma distribution 

β parameter of a trapezoidal distribution equal to the ratio of the semi-width of the top of the 
trapezoid to that of the base 

β parameter of a gamma distribution 

Γ(z)  gamma function with variable z 

δ numerical tolerance associated with a numerical value 

δ(z)  Dirac delta function with variable z 

η variable describing the possible values of the output quantity Y 

λ1 top semi-width of the trapezoid for a trapezoidal distribution 
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λ2 base semi-width of the trapezoid for a trapezoidal distribution 

µ expectation of a quantity characterized by a probability distribution 

ν degrees of freedom of a t-distribution or a chi-squared distribution 

νeff effective degrees of freedom associated with the standard uncertainty u(y) 

νp degrees of freedom associated with a pooled standard deviation sp obtained from several 
series of indications 

ξ variable describing the possible values of the random variable X 

ξ vector variable (ξ1,…,ξN)T describing the possible values of the vector input quantity X 

ξi variable describing the possible values of the input quantity Xi 

σ standard deviation of a quantity characterized by a probability distribution 

σ 2 variance (squared standard deviation) of a quantity characterized by a probability distribution 

Φ phase of a quantity that cycles sinusoidally 

2
νχ  chi-squared distribution with ν degrees of freedom 
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propagation of uncertainty     3.18, 

4.9, 5.4.1, 5.6.2, 5.7.1, 5.8.1, 5.11.2, 
5.11.6, 7.4.2, 8.1.2, 9.2.2.3, 9.3.1.3, 
9.4.2.2.1, 9.4.2.2.8 

R 

random variable     3.1, 4.1, 4.3, 
5.6.3, 5.9.6, 6.2.1, 6.2.2, 7.9.4 

rectangular distribution     6.4.2, 
9.2.3, 9.2.4, C.2, E 

 assignment to a 
quantity     6.4.2.1, 9.3.1.4, 
9.5.2.6.2 

 expectation and 
variance      6.4.2.3 

 probability density 
function     6.4.2.2 

 sampling from     6.4.2.4, 9.1.4, 
C.3 

rectangular distribution with 
inexactly prescribed limits     6.4.3 

 assignment to a 
quantity     6.4.3.1, 9.5.2.9.2, 
9.5.2.10.2 

 expectation and 
variance     6.4.3.3 

 probability density 
function     6.4.3.2 

 sampling from     6.4.3.4 
rectangular number generator 
 quality of     C.3.1.1 
 recommended     C.3.3 
reliability of uncertainty     see 

standard uncertainty 
reporting the results     1, 5.5, 9.1.3 

S 

sensitivity coefficients     5.4.3, 
5.6.3, 5.11.4, 5.11.6, 9.3.2.5, 
9.5.2.6.2, B 

significant decimal digits     1, 3.20, 
4.13, 5.5.2, 6.4.3.4, 7.2.1, 7.6, 7.9.2, 
8.1.3, 8.2, 9.1.3 

skewness     7.5.1, 9.4.2.4.1 
sorting algorithm     7.5.1, 7.8.2 
stages of uncertainty 

evaluation     5.1.1, 5.6.1 
 formulation     5.1.1, 5.1.3 
 propagation     5.1.1, 5.1.3, 5.4, 

5.4.3, 5.6.1, 5.6.3, 5.9 
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 summarizing     5.1.1, 5.1.3, 5.3, 
5.6.1, 5.6.3, 5.9 

standard deviation     3.8, 5.1.1, 
5.3.1, 5.6.2, 5.6.3 

 of a set of indications     5.11.2 
 of sampled model values     7.6 
 pooled     6.4.9.6 
standard uncertainty     4.10, 5.1.1, 

5.1.2, 5.3.1, 5.5.1, 5.11.2, 5.11.5, 
5.11.6, 8.1.3 

 from GUM uncertainty 
framework     5.6.2, 5.6.3 

 from Monte Carlo method     5.9.6, 
7.6 

 reliability of     6.4.9.4 
summarizing     see stages of 

uncertainty evaluation 

T 

t-distribution     3.5, 6.4.9 
 assignment to a 

quantity     6.4.9.2, 6.4.9.7, 
9.5.2.2.2, 9.5.2.3.2, 9.5.2.4.2, 
9.5.2.5.2 

 expectation and 
variance     6.4.9.4 

 probability density function     3.5, 
6.4.9.3 

 sampling from     6.4.9.5, C.6 
Taylor series approximation     4.9, 

5.4.1, 5.6.2, 5.11.4, 8.1.2, 9.1.1, 
9.1.6, B.1, F.3.1.3 

tests of randomness     7.3, C.3.2.2 
trapezoidal distribution     6.4.4 
 assignment to a 

quantity     6.4.4.1 
 expectation and 

variance     6.4.4.3 
 probability density 

function     6.4.4.2 
 sampling from     6.4.4.4 
triangular distribution     6.4.5 
 assignment to a 

quantity     6.4.5.1 
 expectation and 

variance     6.4.5.3 
 probability density 

function     6.4.5.2 
 sampling from     6.4.5.4 
Type A and Type B evaluations of 

uncertainty     5.1.2, 5.11.2, 5.11.4, 
6.1.3, 6.4.9.4 

U 

U-shaped distribution     see arc 
sine distribution 

uncertainty evaluation 
problems     1 

uncertainty matrix     3.11, 6.4.8.1, 
F.3.2.1 

V 

variance     3.7, 4.3, 5.3.1 
 of a set of indications     6.4.9.2 
variance-covariance matrix     3.11 
VIM     see International vocabulary 

of basic and general terms in 
metrology (VIM) 

W 

Welch-Satterthwaite 
formula     5.6.3, 5.7.2, 5.11.6, 
6.4.9.4, 9.5.3.1 
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