
ICS 35.060 Ref. No. ISO/IEC 13211-1:1995/Cor.3:2017(E)

© ISO/IEC 2017 – All rights reserved

Published in Switzerland

INTERNATIONAL STANDARD ISO/IEC 13211-1:1995
TECHNICAL CORRIGENDUM 3

Published 2017-07

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION  МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ  ORGANISATION INTERNATIONALE DE NORMALISATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION  МЕЖДУНАРОДНАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМИССИЯ  COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Information technology — Programming languages — Prolog —

Part 1:
General core

TECHNICAL CORRIGENDUM 3

Technologies de l'information — Langages de programmation — Prolog —

Partie 1: Noyau général

RECTIFICATIF TECHNIQUE 3

Technical Corrigendum 3 to ISO/IEC 13211-1:1995 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and
system software interfaces.

Allow explicitly extensions to options in 5.5 Extensions. Add new subclause

5.5.12 Options

A processor may support one or more additional options such as stream-options

(7.10.2.11), close-options (7.10.2.12), read-options (7.10.3), and write-options (7.10.4)

as an implementation specific feature. An invalid option E shall be associated with only

two error conditions: an instantiation error when there is an instance (3.95) of E that is a

valid option, and a domain error for the domain optname_option when there is no

instance of E that is a valid option. Further, an instantiation error may occur in place of

the domain error if a component of E is a variable, and an instantiated component is

required.

NOTE — A valid option may be associated with other error conditions like 8.11.5.3 l

and m.

In 6.2.1 Prolog text, add an optional layout text sequence to the fourth and last production

p text = [layout text sequence (* 6.4.1 *)] ;

In 7.1.6.3 a, Iterated-goal term, replace unifies with by has the form

a) If T has the form ^(_, G) then ...

Add term-to-body conversion in 7.8.3.4 Examples. Replace first paragraph by:

Table 21 and 22 show the execution stack before and

after executing the control construct call(G) with goal

obtained from G in step 7.8.3.1 f via 7.6.2.

Replace in Table 22 G by goal .

N + 1 ((goal, N – 1), Σ nil

In 7.10.3 Read-options list, clarify unification for variables/1, specify left-to-right traversal order in

read-options variable_names/1 and singletons/1. Replace the three paragraphs by:

variables(Vars) — After inputting a term, Vars shall be unified with a list of the

variables in the term input, in left-to-right traversal order.

variable_names(VN_list) — After inputting a term, VN_list shall be unified with a list

of elements where: (1) each element is a term A = V, and

(2) V is a named variable of the term, and (3) A is an

atom whose name is the characters of V, and (4) there is exactly one element for each

named variable, and (5) the elements appear in the order of the first occurrence of their

variables V in the term input, in left-to-right traversal order.

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

singletons(VN_list) — After inputting a term,

VN_list shall be unified with a list of elements

where: (1) each element is a term A = V, and (2) V is

a named variable which occurs only once in the term,

and (3) A is an atom whose name is the characters of V,

and (4) there is exactly one element for each named variable occurring only once, and

(5) the elements appear in the order of the first occurrence of their variables V in the

term input, in left-to-right traversal order.

Remove "ground" in 3.206, add write-option variable_names(VN_list) before numbervars(Bool) in

analogy to the read-option. Replace "an non-negative" by "a non-negative" in paragraph

numbervars(Bool). Add Note 2

7.10.4 Write-options list

variable_names(VN_list) — Each variable V is output as the sequence of characters

defined by the syntax for the atom A iff a term A = V is an element of the list VN_list.

If more than one element applies, the leftmost is used. VN_list is a list of terms A = T

with A an atom and T any term, possibly a variable.

NOTE 2 — Many Prolog processors modified write option numbervars/1 to print

arbitrary variable names. The write option variable_names/1 serves this purpose and

avoids vulnerabilities.

In 7.10.5, add writing with variable_names/1, correct terminology and writing of {}, lists, extra

round brackets. Add as first subclause a1, rename and replace subclause a by a2, e by e1, g by e2,

add new subclause e3, replace subclauses f and g:

7.10.5 Writing a term

a1) If Term is a variable and there is an effective write-option variable_names(VN_list)

and there is an element A = Term of the list VN_list with A an atom, then A is output

with effective write-option quoted(false).

a2) Else if Term is a variable, a character sequence repre-

senting that variable is output. The sequence begins

with _ (underscore) and the remaining characters are

implementation dependent. During the execution of write_term/3, the

same character sequence

is used for each occurrence of a particular variable

and a different character sequence is used for each

distinct variable.

e1) If Term has the form '$VAR'(N) for some

non-negative integer N, and there is an effective write-option

numbervars(true), a variable name as defined in

subclause 7.10.4 is output,

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

e2) Else if Term has the form '.'(Head, Tail), and

there is an effective write-option ignore_ops(false),

then Term is output using list notation, that is:

1) [(open list char) is output.

2) Head is output by recursively applying these

rules. Head is preceded by ((open char)

and followed by) (close char), if the term could not be

re-input correctly with same set of current operators.

3) If Tail has the form '.'(H,T) then , (comma

char) is output, set Head:=H, Tail:=T, and goto (2).

4) If Tail is [] then a closing bracket] (close list

char) is output,

5) Else a | (head tail separator char) is output,

Tail is output by recursively applying these rules.

Tail is preceded by ((open char)

and followed by) (close char), if the term could not be

re-input correctly with same set of current operators.

And finally,] (close list char) is output.

e3) Else if Term has the form '{}'(Arg), and there is an effective write-option

ignore_ops(false), then Term is output as a curly bracketed term (6.3.6), that is:

1) { (open curly char) is output.

2) Arg is output by recursively applying these rules.

3) } (close curly char) is output.

f) Else if Term has a principal functor which is not

a current operator, or if there is an effective write-

option ignore_ops(true), then the term is output in

functional notation (6.3.3), that is:

1) The atom of the principal functor is output.

2) ((open char) is output.

3) Each argument of the term is output by recursively

applying these rules. The argument is preceded by ((open char) and followed by)

(close char), if the term could not be re-input correctly with the same set of

current operators.

4) , (comma char) is output between each successive

pair of arguments.

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

5)) (close char) is output.

h) Else if Term has a principal functor which is an

operator, and there is an effective write-option

ignore_ops(false), then the term is output in operator

form, that is:

1) The atom of the principal functor is output

in front of its argument (prefix operator), between

its arguments (infix operator), or after its argument

(postfix operator). In all cases, a space is output

to separate an operator from its argument(s) if any

ambiguity could otherwise arise.

Operators ',' and '|' are output as , (comma char) and | (bar char) respectively.

2) Each argument of the term is output by recursively

applying these rules. An argument

is preceded by (

(open char) and followed by) (close char) if: (i) the argument's

principal functor is an operator whose priority is so

high that the term could not be re-input correctly with

same set of current operators, or (ii) the argument is

an atom which is a current operator, or (iii) the principal functor is output as

a prefix operator - and the argument is a non-negative number, or (iv) the

principal functor is output as a prefix operator - and the argument is output

in infix or postfix operator form.

In 7.12.2 Error classification, add missing type, remove superfluous domain, add comma.

7.12.2 b: Add float to the set ValidType.

7.12.2 c: Remove character_code_list from the set ValidDomain.

7.12.2 e: add comma to PermissionType ∈ { binary_stream, flag

In 8.1.2.1, 8.11.5.2, 8.11.6.2, add _list to types close_options and stream_options. Add 8.1.3 Note 7

for options lists

8.1.3 Errors

7 When a built-in predicate has an argument Options whose type is a list of optname-

options as input, the argument is always +optname_options_list. It is always associated

with:

1. an instantiation error, when Options is a partial list, or an element of a list prefix

of Options is not a valid option but an instance of the element is a valid option;

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

2. a type error of the form type_error(list, Options), when Options is neither a

partial list nor a list;

3. a domain error of the form domain_error(optname_option, E), when an element

E of a list prefix of Options is neither a valid option nor any instance of E is a

valid option; an instantiation error may occur

 in place of the domain error, if a component is a variable, and an instantiated

component is required.

A valid option may be associated with other error conditions.

In 8.5.1.4 Examples, add alternate error to second last example. Replace example by

current_prolog_flag(max_arity, A),

 X is A + 1,

 functor(T, foo, X).

 If the Prolog flag max_arity has the value unbounded

 type_error(evaluable, unbounded/0)

 else

 representation_error(max_arity).

In 8.9.2.1 e Description (assertz/1), replace B by G.

In 8.10.3.4 example no. 20: undo the change introduced in Cor.1. That is, keep the list

[a, b, f(b), f(a)] as it originally was in IS 13211-1:1995.

In 8.11.4.1 add subclause b: b) the goal succeeds.

Replace the four subclauses 8.11.5.3 c, 8.11.6.3 b, 8.14.1.3 b, 8.14.2.3 b respectively:

c/b) Options is a partial list or has a list prefix with an element

E which is a variable or which has a component

which is a variable, and an instantiated component is required.

— instantiation_error.

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

Replace the four subclauses 8.11.5.3 i, 8.11.6.3 e, 8.14.1.3 e, 8.14.2.3 e using in place of stream-

option for the latter three close-option, read-option, and write-option respectively:

i/e) An element E of a list prefix of the Options list is neither a

variable nor a stream-option and there is no instance of E that is a stream-option.

— domain_error(stream_option, E).

In 8.14.1.1 k, replace reference 6.4 by 6.2.2.

In 8.14.2.4 Examples, replace second example. Add three further examples

write_canonical([1,2,3]).

 Succeeds, outputting the characters

'.'(1,'.'(2,'.'(3,[])))

 to the current output stream.

write_term(1,[quoted(non_boolean)]).

 domain_error(write_option,quoted(non_boolean)),

write_term(1,[quoted(B)]).

 instantiation_error.

B = true, write_term(1,[quoted(B)]).

 Succeeds, unifying B with true, and outputting

 the character 1.

In 8.17.1.4 Examples, replace domain flag in error in fourth example by prolog_flag:

set_prolog_flag(date, 'July 1988').

 domain_error(prolog_flag, date).

In 9.3.1.3 c, replace Y by VY.

In 9.3.10.3 e, replace error condition for (^)/2 when resulting value is not an integer but still a real

number. Add note.

e) VX and VY are integers and VX is not equal to 1, 0, or –1 and VY is negative.

— type_error(float, VX).

NOTE — Error condition 9.3.10.3 e is satisfied when a float as an argument is needed

for a defined result.

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

Replace and add examples in 9.3.10.4:

2^(-1).

 type_error(float, 2).

2.0^(-1).

 Evaluates to the value 0.5.

ISO/IEC 13211-1:1995/Cor 3: 2017

© ISO/IEC 2017 – All rights reserved

