

DIN IEC/TS 61244-1 (VDE V 0306-11):2016-05

Anwendungsbeginn

Anwendungsbeginn dieses Dokuments ist 2016-05-01.

Inhalt

		Seite
Nation	ales Vorwort	
Einleitu	ing	5
1	Anwendungsbereich	6
2	Verfahren zur Gewinnung von Profilen zur Bestimmung der diffusionsbegrenzten Oxidation	6
2.1	Allgemeines	6
2.2	Verfahren zur Ermittlung eines Infrarot-Profils	6
2.3	Ermittlung eines Modul-Profils	
2.4	Ermittlung eines Dichte-Profils	13
2.5	Andere Methoden zur Profil-Ermittlung	16
3	Theoretische Modelle zur diffusionsbegrenzten Oxidation	17
4	Permeationsmessungen	20
5	Messungen des Sauerstoffverbrauchs	21
6	Vergleich von theoretischen und experimentellen Ergebnissen	21
7	Sauerstoff-Überdruck-Verfahren	22
8	Zusammenfassung	24
Anhang A (informativ) Theoretische Ableitung der diffusionsbegrenzten Oxidation		25
A.1	Allgemeines	25
A.2	Numerische Simulation	28
A.3	Zylindrische und sphärische Geometrien und Simulation	29
A.4	Zeitabhängigkeit der Simulation	34
Literatu	urhinweise	36
Bilder		
Bild 1 -	 Relative Oxidation, ermittelt aus der Absorption der Carbonylbande, in Abhängigkeit von der Entfernung zur Oberfläche bei einem Polyolefin nach Alterung von 6 Tagen bei 100 °C in Luft (aus [18]) 	7
Bild 2 -	- Tiefenverteilung der Carbonylgruppen in bestrahlten (0,69 Gy/s) Vielschichtproben, bestehend aus 4, 18, 27 bzw. 44 Schichten von 22 μm dicken Filmen	8
Bild 3 -	 Mikro-FTIR-photometrische Messung von Profilen von Reaktionsprodukten und verbleibenden Doppelbindungen in einem während 100 h photooxidierten SBR-Films 	9
Bild 4 -	- Schematisches Diagramm des Gerätes zur Bestimmung des Modul-Profils	10
Bild 5 -	 Modul-Profile eines kommerziellen Fluorelastomers mit Plattendicke 1,68 mm, nach Luftalterung bei 5,49 kGy/h und 70 °C bis zu den angegebenen Energiedosiswerten (aus [15]) 	11
Bild 6 -	- Modul-Profile eines kommerziellen Fluorelastomers mit Probendicke 1,68mm, nach Luftalterung bei 0,90 kGy/h und 70 °C bis zu den angegebenen Energiedosiswerten (aus [15])	11
Bild 7 -	- Modul-Profile eines kommerziellen Fluorelastomers mit Plattendicke 1,68mm, nach Luftalterung bei 0,14 kGy/h und 70 °C bis zu den angegebenen Energiedosiswerten (aus [15])	12

— Vornorm —

DIN IEC/TS 61244-1 (VDE V 0306-11):2016-05

		Seite
Bild	8 – Modul-Profile eines Polychloroprenelastomers mit Plattendicke 1,9 mm, nach Luftalterun während der angegebenen Zeitspanne bei 150 °C (linke Seite) und 100 °C (rechte Seite) (aus [10])	g 13
Bild	9 – Experimentell ermittelte Dichte-Profile (Kreuze) von EPDM-Platten mit einer Dicke von 0.302 cm (links) und 0.18 cm (rechts), nach Luftalterung bei 6.65 kGv/h und 70 °C	
Bild	10 – Einfluss der Gesamt-Energiedosis auf XMA-Profile bei EPDM-Platten mit einer Dicke vo 2 mm, nach Bestrahlung unter Luft bei 1 kGy/h (aus [24])	on 15
Bild	11 – XMA-Profile von EPDM-Platten mit einer Dicke von 1 mm, nach Wärmealterung in Luft (aus [24])	
Bild	 12 – Mit NMR gemessene Selbstdiffusions-Koeffizienten von Polyethylen niedriger Dichte (LDPE) in Abhängigkeit vom Abstand zur Probenoberfläche nach <i>p</i>-Bestrahlung in Luft of Vakuum bei 0,6 Gy/s bis zu den angegebenen Energiedosiswerten (aus [26]) 	der 16
Bild	13 – Chemolumineszenz-Profile eines Polypropylens nach γ-Bestrahlung unter Luft mit 0,05 MGy bei 2 kGy/h (Messwerte aus [30])	17
Bild	14 – Theoretische Oxidationsprofile für verschiedene Werte von α (Zahlen an den Kurven) n $\beta = 0.1$	nit 19
Bild	15 – Identisch mit Bild 14, jedoch β = 10	19
Bild	16 – Identisch mit Bild 14, jedoch β = 1 000	20
Bild	17 – Diagramm von $\alpha_c/(\beta + 1)$ gegen β, wobei α_c den Wert für 90 % integrierte Oxidation bedeutet (aus [7], [23])	20
Bild	18 – Apparatur für die Bestrahlung unter Sauerstoffüberdruck	23
Bild	19 – Reißdehnung (links) und Reißfestigkeit (rechts) von EPR-Materialien nach Luftalterung den angegebenen hohen und niedrigen Dosisleistungen bzw. nach Alterung in der Sauerstoff-Überdruck-Apparatur nach Bild 18 bei hoher Dosisleistung	bei
Bild	A.1 – Vereinfachtes Schema der Reaktionskinetik der Oxidation von Polymeren (aus [44], [45])	25
Bild	A.2 – Typisches Beispiel einer normalisierten Sauerstoffkonzentration für zylindrische Forme und β = 0,01 aus [46]	en 30
Bild	A.3 – Typisches Beispiel eines relativen Sauerstoffverbrauchs für eine zylindrische Form un $\beta = 0,01$ aus [46]	d 30
Bild	A.4 – Typisches Beispiel einer normalisierten Sauerstoffkonzentration für eine zylindrische Form und β = 100 aus [46]	31
Bild	A.5 – Typisches Beispiel eines relativen Sauerstoffverbrauchs für eine zylindrische Form un $\beta = 100$ aus [46]	d 31
Bild	A.6 – Typisches Beispiel einer normalisierten Sauerstoffkonzentration für eine sphärische Fo und β = 0,01 aus [46]	orm 32
Bild	A.7 – Typisches Beispiel eines relativen Sauerstoffverbrauchs für eine sphärische Form und $\beta = 0,01$ aus [46]	32
Bild	A.8 – Typisches Beispiel einer normalisierten Sauerstoffkonzentration für eine sphärische Fo und β = 100 aus [46]	orm 33
Bild	A.9 – Typisches Beispiel eines relativen Sauerstoffverbrauchs für eine sphärische Form und β = 100 aus [46]	
Bild	A.10 – Typisches Beispiel einer zeitabhängigen normalisierten Sauerstoffkonzentration im Zentrum für den Fall β = 1 aus [46]	34
Bild	A.11 – Typisches Beispiel einer zeitabhängigen normalisierten Sauerstoffkonzentration im Zentrum für den Fall α = 50 aus [46]	35