		Seite
Europä	aisches Vorwort	5
Einleit	ung	6
1	Anwendungsbereich	7
2	Normative Verweisungen	7
3	Begriffe, Formelzeichen und Einheiten	7
3.1	Begriffe	7
3.2	Formelzeichen und Einheiten	10
4	Kurzbeschreibung	12
4.1	Messverfahren	12
4.2	Unsicherheiten des Messverfahrens	13
5	Ausrüstung	13
5.1	Tragbares In-situ-Spektrometriesystem	13
5.2	Detektorsystem	14
5.3	Elektronik zur Impulsverarbeitung	15
5.4	Haltevorrichtung für das Detektorsystem	16
5.5	Kollimierter Detektor	16
6	Verfahren	18
6.1	Kalibrierung	18
6.2	Kombiniertes Kalibrierverfahren	19
7	Qualitätssicherung und Programm zur Qualitätsüberwachung	24
7.1	Allgemeines	24
7.2	Einflussgrößen	24
7.3	Geräteüberprüfung	24
7.4	Überprüfung des Verfahrens	24
7.5	Qualitätsüberwachungsprogramm	24
7.6	Standardarbeitsanweisung	26
8	Darstellung der Ergebnisse	26
8.1	Berechnung der flächen- oder massenbezogenen Aktivität	26
8.2	Berechnung der charakteristischen Grenzen sowie der besten Schätzung der Messgröße und der dieser zugeordneten Standardunsicherheit	26
8.3	Berechnung der nuklidspezifischen Ortsdosisleistung	28
9	Prüfbericht	29
Anhan	g A (informativ) Einfluss von Radionukliden in Luft auf das Ergebnis bei der Bestimmung der flächen- oder massenbezogenen Aktivität mit einem In-situ-Gammaspektrometer	30
Anhan	g B (informativ) Einflussgrößen	31
Anhan	g C (informativ) Kenndaten von Germaniumdetektoren	34
Anhan	g D (informativ) Sichtbereiche eines In-situ-Gammaspektrometers als Funktion der Photonenenergie bei verschiedenen Radionuklidverteilungen im Boden	36

DIN EN ISO 18589-7 (VDE 0493-4-5897):2016-05 EN ISO 18589-7:2016

	Seite
Anhang E (informativ) Grundlagen zur Berechnung von Geometrie- und Winkelkorrektionsfaktoren	40
Anhang F (informativ) Beispiel für die Berechnung der charakteristischen Grenzen sowie der besten Schätzung der Messgröße und der dieser zugeordneten Standardunsicherheit	47
Anhang G (informativ) Faktoren zur Umrechnung der flächen- oder massenbezogenen Aktivität in Luftkermaleistung und Umgebungs-Äquivalentdosisleistung bei verschiedenen Verteilungen von Radionukliden im Boden	51
Anhang H (informativ) Massenschwächungskoeffizienten für Boden und Schwächungskoeffizienten für Luft als Funktion der Photonenenergie und Abweichung von $G(E,V)$ für verschiedene Bodenzusammensetzungen.	58
Literaturhinweise	60
Bilder	
Bild 1 – Schematische Darstellung (Schnitt) einer Anordnung aus Germaniumdetektor und zylinderförmigem Kollimator	17
Bild 2 – Schematische Übersicht über empirische und Modell-Größen und ihre Verknüpfung zur Kalibrierung eines In-situ-Gammaspektrometers	20
Bild 3 – Schematische Übersicht der individuellen Module für die numerische Kalibrierung	23
Bild A.1 – Flächenbezogene Aktivität bei Ablagerung auf der Bodenoberfläche oder massenbezogene Aktivität bei homogener Verteilung im Boden, hervorgerufen durch Aktivität in der Umgebungsluft mit einer Aktivitätskonzentration von 1 Bq · m ⁻³	30
Bild C.1 – Photonentransmission für verschiedene Detektortypen, Fenster- und Endkappenmaterialien als Funktion der Photonenenergie	35
Bild D.1 – Sichtbereiche eines In-situ-Gammaspektrometers als Funktion der Photonenenergie für verschiedene Radionuklidverteilungen im Boden und eine Detektorhöhe von 1 m, mit Relaxationsmassenflächendichte β in kg · m ⁻² als Parameter	36
Bild D.2 – Detektoransprechvermögen eines isotropen Detektors als Funktion der Photonenenergie für eine homogene unendlich ausgedehnte Oberflächenkontamination	37
Bild D.3 – Detektoransprechvermögen eines nicht-isotropen Detektors als Funktion der Photonenenergie für eine homogene unendlich ausgedehnte Oberflächenkontamination	38
Bild D.4 – Detektoransprechvermögen eines kollimierten Detektors als Funktion der Photonenenergie für eine homogene endlich ausgedehnte Oberflächenkontamination	39
Bild E.1 – Geometriefunktionen für eine Ablagerung auf der Bodenoberfläche (β = 0 kg · m ⁻²) und für verschiedene exponentielle Verteilungen von Radionukliden im Boden als Funktion der Photonenenergie (Detektorhöhe 1 m, Relaxationsmassenflächendichte β als Parameter)	41
Bild E.2 – Geometriefunktion für homogene Verteilung von Radionukliden im Boden als Funktion der Photonenenergie (Detektorhöhe 1 m)	42
Bild H.1 – Massenschwächungskoeffizienten $\mu_{\rm S}/\rho_{\rm S}$ von Boden und Schwächungskoeffizienten $\mu_{\rm Air}$ von Luft als Funktion der Photonenenergie	58
Bild H.2 – Verhältnis der Geometriefunktionen $G(E, V)$ für ISO- und ICRU- Bodenzusammensetzungen.	59
Tabellen	
Tabelle 1 – Formelzeichen	10
Tabelle 2 – Geeignete Werkstoffe für Kollimatoren und deren Kenndaten	18
Tabelle C.1 – Kenndaten von Germaniumdetektoren für die In-situ-Gammaspektrometrie	34
Tabelle E.1 – Zahlenbeispiel für die Berechnung des Winkelkorrektionsfaktors für ein In-situ-Gammaspektrometer ohne Kollimator	45

DIN EN ISO 18589-7 (VDE 0493-4-5897):2016-05 EN ISO 18589-7:2016

	Seite
Tabelle E.2 – Zahlenbeispiel für die Berechnung des Winkelkorrektionsfaktors W für ein In-situ-Gammaspektrometer mit Kollimator	46
Tabelle G.1 – Faktoren zur Umrechnung der massenbezogenen Aktivität in Luftkermaleistung in 1 m Höhe über dem Boden für natürliche Radionuklide bei homogener Verteilung $(\beta \rightarrow \infty \text{ kg} \cdot \text{m}^{-2})$	51
Tabelle G.2 – Faktoren zur Umrechnung der flächenbezogenen Aktivität in Luftkermaleistung in1 m Höhe über dem Boden für verschiedene Relaxationsmassenflächendichten β	52
Tabelle G.3 – Faktoren zur Umrechnung der flächenbezogenen Aktivität in Umgebungs- Äquivalentdosisleistung $\dot{H}^*(10)$ in 1 m Höhe über dem Boden für verschiedene Relaxationsmassenflächendichten β	54