

DIN IEC/TS 62578 (VDE V 0558-578):2018-09

Anwendungsbeginn

Anwendungsbeginn dieses Dokuments ist 2018-09-01.

Inhalt

Nation	ales Vonwort	Seite
Nation	ales volwort	10
Nation	Dokumenten	10
Nation	aler Anhang NB (informativ) Literaturhinweise	11
Einleitu	ung	13
1	Anwendungsbereich	14
2	Normative Verweisungen	14
3	Begriffe	15
4	Allgemeine Systemeigenschaften von an das Versorgungsnetz angeschlossenen aktiven PWM-Stromrichtern	20
4.1	Allgemeines	20
4.2	Grundsätzliche Topologien und Arbeitsprinzipien	20
4.2.1	Allgemeines	20
4.2.2	Arbeitsprinzipien	20
4.2.3	Ersatzschaltbild eines AIC	22
4.2.4	Filter	23
4.2.5	Pulsmuster	23
4.2.6	Regelverfahren	24
4.2.7	Regelung von Stromkomponenten	24
4.2.8	Aktive Leistungsfaktorkorrektur	24
4.3	AIC-Auslegung	25
4.3.1	Allgemeines	25
4.3.2	Umrichterauslegung unter sinusförmigen Betriebsbedingungen	25
4.3.3	Umrichterauslegung bei harmonischen Strömen	25
4.3.4	Umrichterauslegung bei dynamischen Betriebszuständen	26
5	Betrachtungen zur elektromagnetischen Verträglichkeit (EMV) bei der Verwendung von AICs	26
5.1	Allgemeines	26
5.2	Niederfrequente Phänomene (< 150 kHz)	
5.2.1	Allgemeines	27
5.2.2	Aufkommende Stromrichtertopologien und ihre Vorteile für das Stromversorgungsnetz	27
5.2.3	Aktive Symmetrierung des Netzwerks	
5.2.4	Gemessene Netzimpedanzen im Bereich zwischen 2 kHz bis 20 kHz	34
5.2.5	Vorschlag für eine angemessene Netznachbildung (LISN) von 2 kHz bis 9 kHz	39
5.2.6	Auswirkungen auf industrielle Geräte im Frequenzband 2 kHz bis 9 kHz	43
5.3	Hochfrequente Phänomene (> 150 kHz)	45

531	Allgemeines	Seite
522		45
533		45
534	FMV-Filter	46
5.4	Hörhare Geräuscheffekte	46
5.5	Ableitströme	47
5.6	Aspekte der Systemintegration und spezielle Prüfungen	
6	Merkmale eines aktiven PWM-Spannungszwischenkreisumrichters in Zweipunkttechnik	
6.1	Allgemeines	47
6.2	Allgemeine Funktion, grundlegende Schaltungstopologien	47
6.3	Leistungsregelung	50
6.4	Dynamische Leistungsfähigkeit	51
6.5	Gewünschte nicht sinusförmige Netzströme	51
6.6	Unerwünschte nicht sinusförmige Netzströme	51
6.7	Verfügbarkeit und Systemaspekte	52
6.8	Betrieb im aktiven Filtermodus	53
7	Merkmale eines PWM-aktiven Einspeiseumrichters mit Spannungszwischenkreis in Dreipunkt-Topologie	53
7.1	Allgemeine Funktion, grundlegende Schaltungstopologien	53
7.2	Leistungsregelung	54
7.3	Dynamische Leistungsfähigkeit	54
7.4	Unerwünschte nicht sinusförmige Netzströme	55
7.5	Verfügbarkeit und Systemaspekte	55
8	Merkmale eines aktiven PWM-Spannungszwischenkreisumrichters in Multi-Level-Topologie	56
8.1	Allgemeine Funktion, grundlegende Schaltungstopologien	56
8.2	Leistungsregelung	57
8.3	Dynamische Leistungsfähigkeit	57
8.4	Verzerrung der Netzspannung	58
8.5	Verfügbarkeit und Systemaspekte	58
9	Merkmale eines Spannungszwischenkreis-AIC vom Typ F3E	58
9.1	Allgemeine Funktion, grundlegende Schaltungstopologien	58
9.2	Leistungsregelung und wechselspannungsseitige Netzfilter	59
9.3	Dynamische Leistungsfähigkeit	61
9.4	Oberschwingungsstrom	62
10	Merkmale eines Spannungszwischenkreis-AIC in Puls-Chopper-Topologie	62
10.1	Allgemeines	62
10.2	Allgemeine Funktion, grundlegende Schaltungstopologien	62
10.3	Erwünschter nicht sinusförmiger Netzstrom	64
10.4	Unerwünschter nicht sinusförmiger Netzstrom	64

		Seite
10.5	Zuverlässigkeit	64
10.6	Leistungsfähigkeit	64
10.7	Verfügbarkeit und Systemaspekte	64
11	Merkmale eines Zweipunkt-Stromzwischenkreis-PWM-AIC (CSC)	64
11.1	Allgemeines	64
11.2	Allgemeine Funktion, grundlegende Umrichteranschlüsse	65
11.3	Leistungsregelung	66
11.4	Dynamische Leistungsfähigkeit	67
11.5	Netzstromverzerrung	68
11.6	Betrieb im aktiven Filtermodus	68
11.7	Verfügbarkeit und Systemaspekte	68
Anhan	g A (informativ)	69
A.1	Regelungsmethoden für AICs in VSC (Spannungszwischenkreis)-Topologie	69
A.1.1	Allgemeines	69
A.1.2	Überlegungen von Regelungsmethoden	69
A.1.3	Kurzschlussüberbrückungsfunktionalität für dezentrale Einprägungen mit AIC	70
A.1.4	Fehlerüberbrückungsmodus	70
A.2	Beispiele für in der Praxis realisierte AIC-Anwendungen	72
A.2.1	Stromzwischenkreis-AIC (CSC)	72
A.2.2	Aktiver Einspeiseumrichter mit Kommutierung auf der DC-Seite (Blindleistungsumrichter)	73
A.3	Einzelheiten über Zweipunkt- und mehrstufige AICs in VSC-Topologie	76
A.3.1	Eigenschaften von aktiven Einspeiseumrichtern (PWM) mit unterschiedlicher Anzahl von Leveln	76
A.3.2	Beispiele für typische Kurvenformen von AICs	77
A.3.3	Aufbau und Realisierung	78
A.4	Grundlegende Übertragungsregeln zwischen Spannungs- und Stromverzerrung eines AIC	78
A.5	Beispiele für den Einfluss von AICs auf die Spannungsqualität	79
A.6	Widerstandsfähigkeit von Leistungskondensatoren bezüglich Verzerrung im Bereich von 2 kHz bis 9 kHz.	80
A.6.1	Allgemeines	80
A.6.2	Kataloginformationen über zulässige harmonische Belastung	82
A.6.3	Frequenzgrenzen für zulässige Verzerrungspegel	82
A.6.4	Frequenzspektrum von aktiven Einspeiseumrichtern	83
A.6.5	Fazit	84
A.7	Auswirkungen zusätzlicher AIC-Filtermaßnahmen im Bereich von 2 kHz bis 9 kHz	84
A.7.1	Allgemeines	84
A.7.2	Beispiel einer PDS-Konstellation (AIC und CSI)	85
A.7.3	Fazit	88
A.8	Beispiel für die Messung der Netzimpedanz	88
A.8.1	Allgemeines	88

		Seite
A.8.2	Grundprinzip der Messung	89
A.8.3	Einprägungsmethoden harmonischer Komponenten für die Messung	89
A.8.4	Harmonische Stromerzeugung durch ein störendes Gerät	90
A.8.5	Referenzen basierend auf Stromeinprägung durch Störung (Methode A)	90
A.8.6	Literaturquellen basierend auf Einprägung einer einzelnen sinusförmigen Frequenz (Methode B)	92
Anhan	g B (informativ)	94
B.1	Grundlegende Überlegungen für Design-Empfehlungen von AICs im Bereich von 2 kHz bis 9 kHz	94
B.1.1	Übersicht	94
B.1.2	Allgemeines	94
B.1.3	Widerstandsfähigkeit von am Stromversorgungsnetz angeschlossenen Leistungskondensatoren und Empfehlung für die Kompatibilität im Frequenzbereich 2 kHz bis 9 kHz	95
B.1.4	Grundlegende Bedingungen für die Festlegung der Widerstandsfähigkeitskurve des Kondensators	95
B.1.5	Anpassung von AIC-Umrichtern (Zweipunkt-PWM) auf verschiedene Netzwerkbedingungen ohne Überlastung von Leistungskondensatoren	97
B.1.6	Überlegungen in Bezug auf Mittelspannungsnetze	99
B.1.7	Überlegungen zur Filterung von AICs	100
B.1.8	Technisch und wirtschaftlich angemessene Menge von AICs	100
B.1.9	Frequenzbereich von 2 kHz bis 9 kHz	101
B.2	Auslegungsempfehlungen für leitungsgebundene Emissionen von Niederspannungs-AICs im angemessenen Zusammenhang mit höheren Frequenzen zwischen 9 kHz und 150 kHz	102
B.2.1	Allgemeines	102
B.2.2	Ergebnisse der Datensammlung	103
B.2.3	Schlussfolgerungen	105
Literati	urhinweise	107
Bilder		
Bild 1 -	- AIC in VSC-Topologie, grundlegende Struktur	21
Bild 2 -	- AIC in CSC-Topologie, grundlegende Struktur	21
Bild 3 -	- Ersatzschaltbild für das Zusammenspiel des Stromversorgungsnetzes mit einem AIC	22
Bild 4 -	 Spannungs- und Stromzeiger von Netz und Umrichter bei Grundfrequenz bei unterschiedlichen Betriebspunkten 	25
Bild 5 -	 Die grundlegenden Felder von EMV als Stellgrößen der Wirtschaftlichkeit 	26
Bild 6 -	-Typische(r) Netzstrom $i_{L}(t)$ und Netzspannung $u_{LN}(t)$ eines netzgeführten Stromrichters mit DC-Ausgang und induktiver Glättung	28
Bild 7 -	– Typische(r) Netzstrom $i_{L}(t)$ und Netzspannung $u_{LN}(t)$ eines ungesteuerten Gleichrichters mit DC-Ausgang und kapazitiver Glättung	28
Bild 8 -	– Typische(r) Netzstrom $i_{L}(t)$ und Netzspannung $u_{LN}(t)$ eines mit einem PWM-Umrichter realisierten AIC mit kapazitiver Glättung ohne zusätzliche Filter	28

DIN IEC/TS 62578 (VDE V 0558-578):2018-09

	Seite
Bild 9 – Beispiel erreichbarer Wirk- und Blindleistung eines AIC (Typ Spannungszwischenkreis) bei unterschiedlichen verketteten Netzspannungen in Prozent (mit 10 % Kurzschluss- spannung, kombiniert aus Trafo- und Filterinduktivität, X/R Verhältnis = 10/1, Zwischenkreisspannung = 6,5 kV)	29
Bild 10 – Prinzip der Kompensation vorgegebener Oberschwingungen im Stromversorgungsnetz durch die gleichzeitige Verwendung von einem AIC und geeignetem Regelverfahren	30
Bild 11 – Typische Spannungsverzerrung der verketteten Spannung und der Phasenspannung, verursacht von einem AIC ohne zusätzliche Filter (<i>u</i> in % und <i>t</i> in Grad)	31
Bild 12 – Grundlegendes Verhalten der relativen Spannungsverzerrung (59. Harmonische) von einem mit einer Pulsfrequenz von 3 kHz betriebenen AIC über <i>R</i> _{SCe} mit der Netzimpedanz nach 5.2.4	32
Bild 13 – Grundlegendes Verhalten der relativen Störströme (59. Harmonische) von einem mit einer Pulsfrequenz von 3 kHz betriebenen AIC über <i>R</i> _{SCe} mit der Netzimpedanz nach 5.2.4	33
Bild 14 – Einphasiges Ersatzschaltbild der drei passiven verketteten Filtertopologien für VSC und ein Beispiel für passive Dämpfung	33
Bild 15 – Beispiel für die Dämpfung der verketteten VSC-Spannung zur verketteten Spannung am IPC mit verketteten Filtertopologien nach Stand der Technik	34
Bild 16 – Anschluss der Geräte zur Messung der Netzimpedanz	35
Bild 17 – Beispiel der gemessenen Impedanz eines Niederspannungstransformators im Leerlauf S = 630 kVA, $u_{\rm k}$ = 6,08 %	36
Bild 18 – Gemessene Variation der Netzimpedanz im Laufe eines Tages an einem Standort	36
Bild 19 – Netzimpedanz mit teilweise negativen Imaginärteil	37
Bild 20 – Verteilung der Netzimpedanz (gemessen zwischen Phase und Neutralleiter) in Niederspannungssystemen über der Frequenz	37
Bild 21 – Statistische Verteilung der Mitimpedanz über der Frequenz in Niederspannungsnetzen	38
Bild 22 – Ersatzschaltbild zur Beschreibung der Netzimpedanz	39
Bild 23 – Schaltungstopologie für die Netzsimulation	40
Bild 24 – Approximierte und gemessene 50-%-Impedanzkurve	41
Bild 25 – Einphasige Schaltungstopologie gemäß IEC 61000-4-7+ für die Netznachbildung	41
Bild 26 – Dreiphasige Schaltungstopologie für die Netznachbildung	42
Bild 27 – Impedanzveränderung der in Bild 26 beschriebenen LISN in der 90-%-Kurve	43
Bild 28 – PDS mit großer Zwischenkreiskapazität	44
Bild 29 – PDS mit großer Kapazität und Netzdrossel	44
Bild 30 – PDS mit einer großen Kapazität und Zwischenkreisdrosseln	45
Bild 31 – Grundlegende EMV-Filtertopologie	46
Bild 32 – Blockschaltbild des PDS mit Hochfrequenz-EMV-Filtersystem	46
Bild 33 – Darstellung einer grundlegenden Topologie eines PWM-Spannungszwischenkreis-AIC in Zweipunktechnik	48
Bild 34 – Typische Kurvenformen von Spannungen $u_{S1N} / U_{LN,1}$ und der Spannung $u_{S12} / U_{LN,1}$ bei einer Pulsfrequenz von 4 kHz	49
Bild 35 – Typische Kurvenformen der Gleichtaktspannung u_{CM} / $U_{LN,1}$ bei einer Pulsfrequenz von 4 kHz, Netzfrequenz ist 50 Hz	49

— Vornorm —

	Seite
Bild 36 – Kurvenform des Stromes I_{L1} / I_{equ} bei einer Pulsfrequenz von 4 kHz, relative Impedanz $u_{SCV,equ}$ von = 6 %	50
Bild 37 – Blockschaltbild eines Zweipunkt-PWM-AIC	50
Bild 38 – Verzerrung des Stromes I_{L1} der Reaktanz X_{equ} , Pulsfrequenz 4 kHz, relative Reaktanz $u_{SCV,equ} = 6 \%$	52
Bild 39 – Typische Spannungen $u_{L1N} / U_{LN,1}$ und $u_{L12} / U_{LN,1}$ bei einer Puls-Frequenz von 4 kHz, relative Reaktanz $u_{SCV,equ} = 6 \%$, $R_{SCe} = 100$	52
Bild 40 – Grundlegende Topologie eines Dreipunkt-AIC. Für ein Antriebssystem (PDS) darf die gleiche Topologie auch auf der Lastseite verwendet werden	53
Bild 41 – Typische Kurvenform der verketteten Spannung eines Dreipunkt-PWM-Umrichters	54
Bild 42 – Beispiel für eine plötzliche Laständerung eines 13-MW-Dreipunktumrichters, bei dem die Stromregelung eine Reaktionszeit innerhalb von 5 ms erreicht	55
Bild 43 – Typische Topologie eines freischwebenden Kondensator (FC)-Vierpunkt-AIC unter Verwendung von IGBTs	56
Bild 44 – Typische Kurvenform der verketteten Spannung eines Multi(Vier-)-Level-AIC	57
Bild 45 – Verzerrungsfrequenzen und Amplituden in der Netzspannung (gemessen direkt an den Brückenabzweig in Bild 25 und beim Netzstrom eines Mehrpunkt(Vier)-AIC (Transformator mit 10 % Kurzschlussspannung)	58
Bild 46 – Topologie eines F3E-AIC	59
Bild 47 – Netzseitiger Filter und Ersatzschaltbild für das F3E-Umrichter-Verhalten für das Stromversorgungsnetz	60
Bild 48 – Stromübertragungsfunktion bei R_{SCe} = 100 und R_{SCe} = 750 und einem netzseitigen Filter: $G(f) = i_{L1} / i_{conv}$	60
Bild 49 – PWM-Spannungsverzerrung über der Netzimpedanz für eine F3E-Einspeisung mit wechselspannungsseitigem Netzfilter	61
Bild 50 – Eingangsstromspektrum eines F3E-75-kW-Umrichters	61
Bild 51 – Oberschwingungsspektrum des Eingangsstromes eines F3E-Umrichters mit R_{SCe} = 100	62
Bild 52 – Darstellung eines Verzerrungseffekts, der durch einen Einphasen-Umrichter mit kapazitiver Last verursacht wird	63
Bild 53 – AC zu AC-AIC-Puls-Chopper, grundlegende Schaltung	63
Bild 54 – Darstellung einer Stromzwischenkreis-Umrichter-AIC-Topologie	65
Bild 55 – Typische Kurvenformen der Ströme und Spannungen eines Stromzwischenkreis-AIC mit hoher Schaltfrequenz	66
Bild 56 – Typisches Blockschaltbild eines Stromzwischenkreis-PWM-AIC	67
Bild 57 – Stromzwischenkreis-AIC als aktiver Filter, um die Oberschwingungsströme durch eine nichtlineare Last zu kompensieren	67
Bild 58 – Sprungantwort (Sollwert und Istwert) des Stromzwischenkreis-AIC mit niedriger Schaltfrequenz	68
Bild A.1 – Prinzipskizze für kombiniertes spannungs- und stromeinprägendes Modulationsbeispiel für Phasenabschnitt R	71
Bild A.2 – Beispiel für geregelten Netzstrom bei einem Spannungseinbruch des Stromversorgungsnetzes unter Verwendung von Hysterese und PWM-Regelung	72
Bild A.3 – Typische Kurvenformen von elektrischem Netzstrom und elektrischer Netzspannung für	
einen Stromzwischenkreis-AIC mit niedriger Schaltfrequenz	72

- Vornorm -

5	Seite
Bild A.4 – Ströme und Spannungen in einem (Halbleiter-)Ventilbauelement eines AIC und eines maschinenseitigen Umrichters, beide mit Stromzwischenkreis mit niedriger Pulsfrequenz	. 73
Bild A.5 – Der Klirrfaktor von Stromversorgungsnetz und Motorstrom bleibt immer unter 8 % (Dreiecke in gerader Linie) in dieser Anwendung	. 73
Bild A.6 – Grundlegende Topologie eines AIC mit Kommutierung auf der DC-Seite (sechspulsige Variante)	74
Bild A.7 – Dynamische Leistung eines Blindleistungsumrichters	. 75
Bild A.8 – Netzstrom für einen zwölfpulsigen Blindleistungsstromrichter in einer kapazitiven und induktiven Betriebsart (<i>u</i> _{SCV,equ} = 15 %)	75
Bild A.9 – Entstehung der Stromkurvenform eines Blindleistungsstromrichters aus der Netzspannung (sinusförmig) und der Umrichterspannung (rechteckig)	76
Bild A.10 – Zweipunkttopologie mit einer Nennspannung von maximal 1 200 V und einer Zeitablenkung von 5 ms/div	. 77
Bild A.11 – Zweipunkttopologie mit einer Nennspannung von maximal 2 400 V und einer Zeitablenkung von 5 ms/div	. 77
Bild A.12 – Vierpunkttopologie mit einer Nennspannung von maximal 3 300 V und einer Zeitablenkung von 5 ms/div	. 78
Bild A.13 – Allgemeiner Einfluss der wesentlichen Eigenschaften auf die Spannungsverzerrung und Stromverzerrung	. 79
Bild A.14 – Gemessene Reduzierung der Spannungsverzerrung, wenn vier AICs an das Stromversorgungsnetz angeschlossen sind	. 80
Bild A.15 – Auszüge aus Katalogdaten eines Herstellers von Leistungskondensatoren; 760 V AC; (Bemessungsspannung: 690 V AC) für die Temperaturberechnung	. 80
Bild A.16 – Blindleistung und Verluste eines Leistungskondensators bei Versorgung durch eine Quelle mit konstanter Referenzspannung und variabler Frequenz ($R_{cp} = f(h)$)	. 81
Bild A.17 – Scheinleistung und Verluste eines typischen Leistungskondensators bei verschiedenen Spannungsverzerrungspegeln und den kritischen Frequenzgrenzen (bei einer einzigen Frequenz), an denen der Temperaturanstieg beträchtliche Werte erreicht (vertikale Pfeile)	. 83
Bild A.18 – Spannungsspektrum eines AIC und die Auswirkungen einer Netzimpedanzreduzierung auf die Temperatur des Kondensators (von 10 K bis 0,44 K) und die Zusammensetzung des Spektrums	84
Bild A 19 – Fine Windkraftanlage und ein Bergwerkshaspelantrieb, an das gleiche Netz	07
angeschlossen	. 85
Bild A.20 – Netzwerkkonfiguration für die Anlage aus Bild A.19 mit zugewiesenen Messpunkten	. 86
Bild A.21 – Normaler Strom des CSI (AIC-Filter deaktiviert) und Verstärkung des Stroms bei Resonanz verursacht durch die AIC-Filterschaltung (wenn der AIC-Filter aktiviert ist)	. 86
Bild A.22 – Grundprinzip der Impedanzmessung	. 89
Bild A.23 – Harmonische Stromerzeugung durch ein störendes Gerät	. 90
Bild A.24 – Messung durch Schalten eines Widerstandes	. 90
Bild A.25 – Messung durch eine Kondensatorbatterie	. 91
Bild A.26 – Ein 6,6-kV-Netzimpedanzmesssystem für Inselnetzerkennung durch die Einprägung von Zwischenharmonischen	. 92
Bild B.1 – Störfestigkeitspegel gegen Oberschwingungsspannungen im Stromversorgungsnetz im Hinblick auf zulässige Temperaturerhöhung in Kondensatoren, wenn die Spannungs- verzerrung entweder durch eine vorherrschende Frequenz (obere Linie) bestimmt ist oder wenn die Verzerrung überwiegend durch ein harmonisches Spektrum, verursacht durch mehrere parallel betriebene AICs (Zweipunkt-PWM), bestimmt ist (untere Linie)	96

	Seite
Bild B.2 – Oberschwingungsspannungsspektrum eines Zweipunkt-PWM-AIC mit akzeptabler Temperaturerhöhung eines Leitungskondensators von nicht mehr als 10 K	97
Bild B.3 – Maximale Spannungsverzerrung eines Spektrums, verursacht durch mehrere AICs (einphasige Topologien)	98
Bild B.4 – Maximale Spannungsverzerrung eines Spektrums, verursacht durch mehrere AICs (dreiphasige Topologien)	98
Bild B.5 – Tabelle zur Anpassung einphasiger AICs (Zweipunkt) an verschiedene Bedingungen des Stromversorgungsnetzes, um die Grenzkurven für Leistungskondensatoren anzuwenden	99
Bild B.6 – Tabelle zur Anpassung dreiphasiger AICs (Zweipunkt) an verschiedene Bedingungen des Stromversorgungsnetzes, um die Grenzkurven für Leistungskondensatoren anzuwenden	99
Bild B.7 – Bild der typischen Netzresonanzfrequenz durch Erhöhung des AIC-Filtervorkommens über dem Spannungsverzerrungspegel	100
Bild B.8 – Skizze der typischen Größe/Kosten einer AIC-Anwendung im Vergleich zur Schaltfrequenz des AIC	101
Bild B.9 – Bild der Wahrscheinlichkeit von Überlastungs- und Stressproblemen für das Netz und die daran angeschlossenen Einrichtungen, je nach festgelegtem Verzerrungspegel unter verschiedenen Annahmen	101
Bild B.10 – Ergebnisse der Datenerhebung im Vergleich zu den in der IEC/TS 62578 vorgeschlagenen Maximalwerten für über 75 kVA bemessene Produkte	103
Bild B.11 – Ergebnisse der Datenerhebung im Vergleich zu den in der IEC/TS 62578 vorgeschlagenen Maximalwerten für unter 75 kVA bemessene Produkte	104
Bild B.12 – Ergebnisse der Datenerhebung im Vergleich zu den in der IEC/TS 62578 vorgeschlagenen Maximalwerten für über 75 kVA bemessene Produkte	104
Bild B.13 – Maximale empfohlene Emissionswerte für AIC verschiedener Kategorien im Bereich von 9 kHz bis zu 150 kHz	105
Tabellen	
Tabelle 1 – Parameter der Netznachbildung für verschiedene Netzimpedanzkurven	40
Tabelle 2 – Parameter der in Bild 25 und Bild 26 beschrieben LISN	42
Tabelle A.1 – Zustand 1: positive Stromgrenze erreicht, Transistor T1 ist auszuschalten, um den Strom zu senken	71
Tabelle A.2 – Zustand 2: negative Stromgrenze erreicht, Transistor T2 ist auszuschalten, um den Strom zu senken	71
Tabelle A.3 – Zustand 0: Strom in Phase R im Toleranzbereich, Pure-Spannungseinprägung aktiv (z. B. mit PWM)	71
Tabelle A.4 – Vergleich von verschiedenen PWM-AICs in VSC-Topologie	76
Tabelle A.5 – Die Spannungsverzerrung auf beiden Leitungen (II und III) ohne und mit Filterschaltung (der Filter wurde bemessen, um 0,2-%-Verzerrung auf der MV-Power-Line zu erreichen)	87
Tabelle A.6 – Stromverteilung innerhalb des Netzwerks, beschrieben für bestimmte Frequenzenund an den in Bild A.20 aufgezeigten zugewiesenen Messpunkten	88
Tabelle B.1 – AIC-Auslegungsempfehlungen für einen maximalen Verzerrungsfaktor im Frequenzbereich von 2 kHz bis 9 kHz	102
Tabelle B.2 – Maximale empfohlene Emissionswerte für AIC verschiedener Kategorien im Bereich von 9 kHz bis zu 150 kHz	106