Europ	äisches Verwort	Seite
Anbor	alscries volwolt	Z
Annar	entsprechenden europäischen Publikationen	3
1	Anwendungsbereich	12
2	Normative Verweisungen	12
3	Begriffe	13
4	Allgemeine Grundsätze für die Anwendung von Überspannungsableitern	23
5	Grundlagen und Anwendungshinweise für Überspannungsableiter	24
5.1	Geschichtliche Entwicklung von Überspannungsschutzeinrichtungen	
5.2	Verschiedene Typen und Bauarten sowie deren elektrische und mechanische Kennwerte	25
5.2.1	Allgemeines	25
5.2.2	Metalloxidableiter ohne Funkenstrecken nach IEC 60099-4	26
5.2.3	Metalloxid-Überspannungsableiter mit internen Serienfunkenstrecken nach IEC 60099-6	36
5.2.4	Leitungsableiter mit externer Funkenstrecke (EGLA) nach IEC 60099-8	38
5.2.5	Überlegungen zur Anwendung	41
6	Isolationskoordination und Anwendung von Überspannungsableitern	54
6.1	Allgemeines	54
6.2	Überblick über die Isolationskoordination	55
6.2.1	Allgemeines	55
6.2.2	Verfahren der Isolationskoordination nach IEC	55
6.2.3	Überspannungen	55
6.2.4	Isolationskoordination für Leitungen: Vorgehensweise für den Einsatz von Ableitern	61
6.2.5	Isolationskoordination für Schaltanlagen: Vorgehensweise für den Einsatz von Ableitern	66
6.2.6	Untersuchung zur Isolationskoordination	70
6.3	Auswahl von Ableitern	
6.3.1	Allgemeines	73
6.3.2	Allgemeines Verfahren zur Auswahl von Überspannungsableitern	
6.3.3	Auswahl von Übertragungsleitungs-Überspannungsableitern, LSA	87
6.3.4	Auswahl von Überspannungsableitern zum Kabelschutz	96
6.3.5	Auswahl von Ableitern für Verteilungsnetze – besondere Hinweise	98
6.3.6	Anwendung und Koordination von Abtrennvorrichtungen	99
6.3.7	Auswahl von Ultrahochspannungsableitern	101
6.4	Standard-Betriebsbedingungen und besondere Betriebsbedingungen	102
6.4.1	Standard-Betriebsbedingungen	102
6.4.2	Besondere Betriebsbedingungen	103
7	Überspannungsableiter für besondere Anwendungen	106
7.1	Überspannungsableiter an Transformator-Sternpunkten	106
7.1.1	Allgemeines	106
7.1.2	Überspannungsableiter an vollisolierten Transformator-Sternpunkten	107
7.1.3	Überspannungsableiter an Transformator-Sternpunkten mit abgestufter Isolierung	107
7.2	Überspannungsableiter zwischen den Phasen	107

Inhalt

		Seite
7.2.1	Allgemeines	107
7.2.2	Sechs-Ableiter-Anschluss	107
7.2.3	Vier-Ableiter-Anschluss (Neptun-Schaltung)	108
7.3	Überspannungsableiter für rotierende Maschinen	109
7.4	Parallel betriebene Überspannungsableiter	110
7.4.1	Allgemeines	110
7.4.2	Kombinieren verschiedener Ableiterbauarten	111
7.5	Überspannungsableiter für Kondensatorschaltvorgänge	111
7.6	Überspannungsableiter für Reihenkondensatorbänke	113
8	Anlagenmanagement für Überspannungsableiter	114
8.1	Allgemeines	114
8.2	Behandlung von Überspannungsableitern im Netz	114
8.2.1	Bestandsdatenbank	114
8.2.2	Technische Spezifikationen	114
8.2.3	Strategische Reserven	114
8.2.4	Transport und Lagerung	115
8.2.5	Inbetriebnahme	115
8.3	Wartung	115
8.3.1	Allgemeines	115
8.3.2	Verschmutzte Ableitergehäuse	116
8.3.3	Beschichtung des Ableitergehäuses	116
8.3.4	Kontrolle von Abtrennvorrichtungen an Überspannungsableitern	117
8.3.5	Übertragungsleitungs-Überspannungsableiter	117
8.4	Betriebseigenschafts- und Diagnosewerkzeuge	117
8.5	Lebensdauerende	117
8.5.1	Allgemeines	117
8.5.2	GIS-Ableiter	118
8.6	Entsorgung und Verwertung	118
Anhan	g A (informativ) Bestimmung zeitweiliger Überspannungen infolge von Erdfehlern	119
Anhan	g B (informativ) Gängige Praxis	123
Anhan	g C (informativ) Ableitermodellierungsverfahren für Untersuchungen unter Berücksichtigung von Isolationskoordination und Energieanforderungen	124
C.1	Ableitermodelle für Stoßsimulationen	124
C.2	Anwendung für Untersuchungen zur Isolationskoordination	125
C.3	Übersicht über die empfohlenen Ableitermodelle für Stoßanwendungen	125
Anhan	g D (informativ) Diagnosegeräte für Metalloxid-Überspannungsableiter im Betrieb	127
D.1	Allgemeines	127
D.1.1	Überblick	127
D.1.2	Ausfallanzeigen	127
D.1.3	Abtrennvorrichtungen	127
D.1.4	Ansprechzähler	127

D 4 5		Seite
D.1.5	Kontrollfunkenstrecken	128
D.1.6	I emperaturmessungen	128
D.1.7	Leckstrommessungen an Metalloxidableitern ohne Funkenstrecke	128
D.2	Messung des Gesamtleckstroms	133
D.3	Messung des resistiven Leckstroms oder der Verlustleistung	133
D.3.1		133
D.3.2	Methode A1 – Verwendung des angelegten Spannungssignals als Referenz	134
D.3.3	Methode A2 – Kompensation der kapazitiven Komponente unter Verwendung eines Spannungssignals	135
D.3.4	Methode A3 – Kompensation der kapazitiven Komponente ohne Verwendung eines Spannungssignals	136
D.3.5	Methode A4 – Kapazitive Kompensation durch Überlagern der Leckströme der drei Phasen	136
D.3.6	Methode B1 – Analyse der Oberschwingung dritter Ordnung	137
D.3.7	Methode B2 – Analyse der Oberschwingung dritter Ordnung mit Kompensation der Oberschwingungen in der Netzspannung	137
D.3.8	Methode B3 – Analyse der Oberschwingung erster Ordnung	138
D.3.9	Methode C – Direkte Bestimmung der Verlustleistung	138
D.4	Informationen des Ableiterherstellers zum Leckstrom	138
D.5	Zusammenfassung der Diagnoseverfahren	139
Anhan	g E (informativ) Daten, die vom Ableiterhersteller für eine sachgerechte Auswahl von Überspannungsableitern benötigt werden	141
Anhar	g F (informativ) Typische Höchstwerte für Restspannungen von Metalloxidableitern ohne Funkenstrecken nach IEC 60099-4	142
Anhan	g G (informativ) Verringerung der Steilheit von einlaufenden Überspannungen mit zusätzlicher Stoßkapazität an der Leitungsklemme	143
G.1	Allgemeines	143
G.2	Steilheitsfaktor	143
G.3	Äquivalente Kapazität in Verbindung mit einer einlaufenden Stoßwellenstirn	145
G.3.1	Allgemeines	145
G.3.2	Beispiele für die Änderung der Steilheit der einlaufenden Überspannung f_s mit typischen Systemparametern von 550 kV und 245 kV	147
G.3.3	Änderung der Koordinations-Stehspannung U_{out} mit dem Steilheitsfaktor f_{o}	147
G.4	EMTP- und Kondensatorauflademodelle für Vergleiche der Änderung der Steilheit an offenen Leitungsklemmen	147
C F	Typische Steilheit (S. = 1,000 kV/us). Vergleich der Änderungen mit C. und C.	140
0.5	Typische Steinen $(S_0 - 1000 \text{ kV/}\mu s)$, vergieich der Anderungen mit C_0 und C_s	
G.6	Kürzere Steilheit (2 000 kV/ μ s), Vergleich der Anderungen mit C_0 und C_s	151
Anhan	g H (informativ) Vergleich des alten Energieeinteilungssystems, basierend auf Leitungs- entladungsklassen mit dem neuem Klassifizierungssystem, basierend auf thermischen Nenn-Energieaufnahmefähigkeiten für Arbeitsprüfungen und wiederholten Nenn- Ladungsableitvermögen für wiederholte Einzelenergieereignisse	153
H.1	Allaemeines	153
H.2	Beispiele	156
Anhan	g I (informativ) Schätzung von Gesamtladungen und -energien von Ableitern während des	164
		101

I.1	Vereinfachtes Verfahren der Schätzung von Leitungsschaltenergien von Ableitern	Seite
I.1.1	Einleitung	161
I.1.2	Berechnungsschritte des vereinfachten Verfahrens	163
I.1.3	Typische Wellenwiderstände der Leitung mit Leiterbündeln	164
l.1.4	Unbeeinflusste Schaltüberspannungen	165
I.1.5	Anwendung von IEC 60099-4:2009, um Werte für den Wellenwiderstand und unbeeinflusste Überspannungen zu erhalten	165
1.2	Beispiel für Ladung und Energie, unter Verwendung von Leitungsparametern berechnet	167
1.3	Beispiele für die Ableiterenergie bei Leitungsschaltung	170
I.3.1	Allgemeines	170
1.3.2	Fall 1 – 145 kV	174
1.3.3	Fall 2 – 242 kV	174
1.3.4	Fall 3 – 362 kV	174
1.3.5	Fall 4 – 420 kV	175
1.3.6	Fall 5 – 550 kV	175
Anhar	ng J (informativ) Lebensdauerende und Austausch von alten SiC-Ableitern mit Funkenstrecke	187
J.1	Überblick	187
J.2	Auslegung und Betrieb von SiC-Ableitern	187
J.3	Fehlerursachen und Alterungserscheinungen	187
J.3.1	Allgemeines	187
J.3.2	Dichtigkeitsprobleme	188
J.3.3	Ausgleich des inneren und äußeren Drucks und der Atmosphäre	188
J.3.4	Erosion der Funkenstreckenelektrode	189
J.3.5	Alterung von Steuerelementen	189
J.3.6	Geänderte Netzbedingungen	189
J.3.7	Angestiegene Fremdschichtklasse	189
J.4	Möglichkeit, den Zustand des Ableiters zu überprüfen	189
J.5	Vorteil eines vorausschauenden Austauschplans	190
J.5.1	Allgemeines	190
J.5.2	Verbesserte Zuverlässigkeit	190
J.5.3	Kostenvorteile	190
J.5.4	Gestiegene Sicherheitsanforderungen	190
J.6	Hinweise zum Austausch	191
J.6.1	Allgemeines	191
J.6.2	Ermitteln der Austauschpriorität	191
J.6.3	Auswahl von MO-Ableitern für Austauschinstallationen	191
Literat	urhinweise	192

Bilder

Bild 1 –	- Beispiel für GIS-Ableiter aus drei mechanischen/einer elektrischen Säule (Mitte) und Ein-	
	Säulen-Ausführung (links) und Strompfad der Ausführung mit drei mechanischen/einer	
	elektrischen Säule (rechts)	31
Bild 2 –	- Typischer berührungssicherer Überspannungsableiter	32

	Seite
Bild 3 – Bauarten von Metalloxid-Uberspannungsableitern mit interner Funkenstrecke	37
Bild 4 – Komponenten eines EGLA nach IEC 60099-8	38
Bild 5 – Typische Anordnung eines 420-kV-Ableiters	43
Bild 6 – Beispiele für Ultrahoch- und Hochspannungsableiter mit Steuer- und Koronaringen	44
Bild 7 – Derselbe Ableitertyp montiert auf einem Stiel stehend (links), von einem geerdeten Stahltragwerk hängend (Mitte) und von einem Leiterseil hängend (rechts)	45
Bild 8 – Anlagen ohne Maschenerder (Verteilungsnetze)	46
Bild 9 – Anlagen mit Maschenerder (Hochspannungsschaltanlagen)	47
Bild 10 – Definition von mechanischen Lasten nach IEC 60099-4:2014	49
Bild 11 – Mittelspannungsableiter mit Abtrennvorrichtung und Isolationswinkel	50
Bild 12 – Beispiele für gute und schlechte Erdungsausführungen für Mittelspannungsableiter	52
Bild 13 – Beispiel für typische Spannungen und Dauer in unterschiedlich geerdeten Netzen	56
Bild 14 – Typische Leiter-Erde-Überspannungen, die in Netzen auftreten	57
Bild 15 – Spannung-Strom-Kennlinie eines Ableiters	58
Bild 16 – Direkteinschlag in einen Phasenleiter mit LSA	63
Bild 17 – Blitzeinschlag in ein Erdseil oder einen Mast mit LSA	64
Bild 18 – Typisches Verfahren für eine Untersuchung zur Isolationskoordination von Überspannungsableitern	72
Bild 19 – Ablaufdiagramme für die Standardauswahl von Überspannungsableitern	75
Bild 20 – Beispiele für die TOV-Festigkeit von Ableitern	76
Bild 21 – Ablaufdiagramm für die Auswahl von NGLA	90
Bild 22 – Ablaufdiagramm für die Auswahl von EGLA	94
Bild 23 – Gebräuchliche Sternpunktanordnungen	99
Bild 24 – Typische Anordnungen für Phase-Phase-Ableiter und Phase-Erde-Ableiter	109
Bild A.1 – Erdfehlerfaktor k abhängig von X_0/X_1 für $R_1/X_1 = R_1 = 0$	119
Bild A.2 – Abhängigkeit zwischen R_0/X_1 und X_0/X_1 für konstante Werte des Erdfehlerfaktors k mit $R_1 = 0$	120
Bild A.3 – Abhängigkeit zwischen R_0/X_1 und X_0/X_1 für konstante Werte des Erdfehlerfaktors k mit $R_1 = 0.5 X_1$	120
Bild A.4 – Abhängigkeit zwischen R_0/X_1 und X_0/X_1 für konstante Werte des Erdfehlerfaktors k mit $R_1 = X_1$	121
Bild A.5 – Abhängigkeit zwischen R_0/X_1 und X_0/X_1 für konstante Werte des Erdfehlerfaktors k mit $R_1 = 2X_1$	121
Bild C.1 – Schematische Skizze einer typischen Ableiterinstallation	124
Bild C.2 – Anstieg der Restspannung als Funktion der vereinbarten Stirnzeit des Stroms	125
Bild C.3 – Ableitermodell für Untersuchungen zur Isolationskoordination – schnell ansteigende Überspannungen und vorläufige Berechnungen (Möglichkeit 1)	126
Bild C.4 – Ableitermodell für Untersuchungen zur Isolationskoordination – schnell ansteigende Überspannungen und vorläufige Berechnungen (Möglichkeit 2)	126
Bild C.5 – Ableitermodell für Untersuchungen zur Isolationskoordination – langsam ansteigende Überspannungen	126
Bild D.1 – Typischer Leckstrom eines nichtlinearen Metalloxidwiderstands unter Laborbedingungen	129

	Seite
Bild D.2 – Typische Leckströme von Ableitern unter Einsatzbedingungen	130
Bild D.3 – Typische Spannung-Strom-Kennlinien von nichtlinearen Metalloxidwiderständen	131
Bild D.4 – Typische normierte Spannungsabhängigkeit bei +20 °C	131
Bild D.5 – Typische normierte Temperaturabhängigkeit bei U_{c}	132
Bild D.6 – Einfluss des Anstiegs des resistiven Leckstroms auf den Gesamtleckstrom	133
Bild D.7 – Gemessene Spannung und gemessener Leckstrom sowie berechneter resistiver und kapazitiver Strom (<i>V</i> = 6,3 kV Effektivwert)	135
Bild D.8 – Resultierender Strom nach Kompensation mit kapazitivem Strom bei U_{c}	136
Bild D.9 – Fehler bei der Bewertung der Oberschwingung dritter Ordnung im Leckstrom für verschiedene Phasenwinkel der Oberschwingung dritter Ordnung in der Netzspannung unter Berücksichtigung verschiedener Kapazitäten und Spannung-Strom-Kennlinien nichtlinearer Metalloxidwiderstände	137
Bild D.10 – Typische Informationen für die Umrechnung in "Standard"-Betriebsbedingungen für die Spannung	139
Bild D.11 – Typische Informationen für die Umrechnung in "Standard"-Betriebsbedingungen für die Umgebungstemperatur	139
Bild G.1 – Wellenformen der Überspannung in verschiedenen Abständen vom Einschlagort (0,0 km) infolge der Koronaentladung	145
Bild G.2 – Fall 1, EMTP-Modell: Spannungsquellenersatzschaltung, Leitung (Z , c) und Schaltanlagen-Sammelschiene (Z , c) und Kapazität (C_s)	148
Bild G.3 – Fall 2, Aufladung des Kondensators über die Leitung Z: $u(t) = 2 \times U_{surge} \times (1 - exp[-t / (Z \times C]) \dots$	149
Bild G.4 – EMTP-Modell	150
Bild G.5 – Simulierte Überspannungen an der Kopplung zwischen Leitung und Schaltanlage	150
Bild G.6 – Simulierte Überspannungen am Transformator	151
Bild G.7 – EMTP-Modell	151
Bild G.8 – Simulierte Überspannungen an der Kopplung zwischen Leitung und Schaltanlage	152
Bild G.9 – Simulierte Überspannungen am Transformator	152
Bild H.1 – Spezifische Energie in kJ/kV Bemessungsspannung in Abhängigkeit vom Verhältnis der Restspannung bei Schaltstoßstrom (U_a) zum Effektivwert der Bemessungsspannung U_r des Ableiters	154
Bild I.1 – Einfaches Netz zur Berechnung der Leitungsentladung von Ableitern und zur Prüfung nach IEC 60099-4:2009	162
Bild I.2 – Linearisierte Ableitergleichung im üblichen Schaltstrombereich der Leitung (angegebene Spannungswerte gelten für einen auf 372 kV bemessenen Ableiter, der in einem 420-kV-Netz verwendet wird)	162
Bild I.3 – Grafische Darstellung des linearisierten Schaltzustands der Leitung und der linearisierten Ableiterkennlinie	164
Bild I.4 – Bereiche der 2-%-Werte langsam ansteigender Überspannungen am empfangenden Ende beim Einschalten und Wiedereinschalten der Leitung	165
Bild I.5 – Spannungen bei Ableitern der Klassen 2 und 3, berechnet mit EMTP-Berechnungen: U_{ps2}	
und U_{ps3} (V × 10 ⁵)	168
Bild I.6 – Ströme bei Ableitern der Klassen 2 und 3, berechnet mit EMTP-Studien: I_{ps2} und I_{ps3} (A)	169
Bild I.7 – Gesamtladungen bei Ableitern der Klassen 2 und 3, berechnet mit EMTP-Simulation: Q_{rs2} und Q_{rs3} (C)	169

	Seite
Bild I.8 – Gesamte aufgenommene Energien bei Ableitern der Klasse 2 und 3, berechnet mit EMTP- Simulation: W_{s2} und W_{s3} (kJ/kV U_r)	170
Bild I.9 – Übliches Netz für die Computersimulation der Leitungswiedereinschaltung	171
Bild I.10 – Üblicher Verlauf einer Wiedereinschaltüberspannung von 550 kV entlang einer Leitung von 480 km Länge	172
Bild I.11 – Ladungsableitung Q_{rs} nach IEC-Leitungsentladung (LD) mit verschiedenen Ableiter-Schutzfaktoren.	173
Bild I.12 – Schaltenergie <i>W</i> _{th} nach IEC-Leitungsentladung (LD) mit verschiedenen Ableiter- Schutzfaktoren	173
Bild I.13 – U_{ps} für eine 145-kV-Netzsimulation (V × 10 ⁵)	177
Bild I.14 – I _{ps} für eine 145-kV-Netzsimulation (A)	177
Bild I.15 – Gesamtladung (Q_{rs}) für eine 145-kV-Netzsimulation (C)	178
Bild I.16 – Gesamtenergie (W_{th}) für eine 145-kV-Netzsimulation (kJ/kV U_{r})	178
Bild I.17 – U_{ps} für eine 245-kV-Netzsimulation (V × 10 ⁵)	179
Bild I.18 – Ips für eine 245-kV-Netzsimulation (A)	179
Bild I.19 – Gesamtladung (Q_{rs}) für eine 245-kV-Netzsimulation (C)	180
Bild I.20 – Gesamtenergie (W_{th}) für eine 245-kV-Netzsimulation (kJ/kV U_{r})	180
Bild I.21 – U_{ps} für eine 362-kV-Netzsimulation (V × 10 ⁵)	181
Bild I.22 – I _{ps} für eine 362-kV-Netzsimulation (A)	181
Bild I.23 – Gesamtladung (Q_{rs}) für eine 362-kV-Netzsimulation (C)	182
Bild I.24 – Gesamtenergie (W_{th}) für eine 362-kV-Netzsimulation (kJ/kV U_r)	182
Bild I.25 – U_{ps} für eine 420-kV-Netzsimulation (V × 10 ⁵)	183
Bild I.26 – I _{ps} für eine 420-kV-Netzsimulation (A)	183
Bild I.27 – Gesamtladung (Q_{rs}) für eine 420-kV-Netzsimulation (C)	184
Bild I.28 – Gesamtenergie (W_{th}) für eine 420-kV-Netzsimulation (kJ/kV U_r)	184
Bild I.29 – U_{ps} für eine 550-kV-Netzsimulation (V × 10 ⁵)	185
Bild I.30 – I _{ps} für eine 550-kV-Netzsimulation (A)	185
Bild I.31 – Gesamtladung (Q_{rs}) für eine 550-kV-Netzsimulation (C)	186
Bild I.32 – Gesamtenergie (W_{th}) für eine 550-kV-Netzsimulation (kJ/kV U_r)	186
Bild J.1 – SiC-Ableiterstapel	188
Tabellen	
I abelle 1 – Mechanische Mindestanforderungen (für Ableiter mit Porzellangehäuse)	48
Tabelle 3 – Definition des Faktors A in den Gleichungen (14) und (15) für verschiedene Freileitungen	80 85

	Seite
Tabelle D.1 – Zusammenfassung der Diagnoseverfahren	140
Tabelle D.2 – Eigenschaften von Vor-Ort-Leckstrommessverfahren	140
Tabelle E.1 – Ableiterdaten, die für die Auswahl eines Überspannungsableiters benötigt werden	141
Tabelle F.1 – Restspannungen für 20 000-A- und 10 000-A-Ableiter, bezogen auf die Bemessungsspannung	142
Tabelle F.2 – Restspannungen für 5 000-A- und 2 500-A-Ableiter, bezogen auf die Bemessungsspannung	142
Tabelle G.1 – Einfluss von C_s auf den Steilheitsfaktor f_s und die Steilheit S_n	146
Tabelle G.2 – Änderung der Koordinations-Stehspannung $U_{\sf cw}$	147
Tabelle H.1 – Strom-Scheitelwerte für die Schaltstoßrestspannungsprüfung	153
Tabelle H.2 – Parameter für die Leitungsentladungsprüfung an 20 000-A- und 10 000-A-Ableitern	154
Tabelle H.3 – Vergleich der Einteilungssysteme nach IEC 60099-4:2009 und IEC 60099-4:2014	155
Tabelle I.1 – Übliche Schaltkennwerte von Ableitern (U_{ps} im Verhältnis zu I_{ps})	163
Tabelle I.2 – Typische Wellenwiderstände von Leitungen (Z_s) mit einzelnen und gebündelten Leitern	164
Tabelle I.3 – Durch die Prüfungen der Leitungsentladungsklasse nach IEC 60099-4:2009 vorgeschriebene Leitungsparameter	166
Tabelle I.4 – Wellenwiderstände der Leitung und unbeeinflusste Überspannungen aus Leitungs- entladungsprüfparametern nach IEC 60099-4:2009 für verschiedene Netzspannungen und Ableiterbemessungen	166
Tabelle I.5 – Vergleich von Energie und Ladung nach Berechnung mit dem vereinfachten Verfahren mit Werten, die durch EMTP-Simulation berechnet wurden – Grundparameter aus Tabelle I.4, verwendet für das vereinfachte Verfahren und für die EMTP-Simulation	167
Tabelle I.6 – Vergleich von Energie und Ladung nach Berechnung mit dem vereinfachten Verfahren mit Werten, die durch EMTP-Simulation berechnet wurden – Berechnungen, die das vereinfachte Verfahren verwenden	167
Tabelle I.7 – Vergleich von Energie und Ladung nach Berechnung mit dem vereinfachten Verfahren mit Werten, die durch EMTP-Simulation berechnet wurden – Ergebnisse von EMTP-Studien	167
Tabelle I.8 – Ergebnisse von Berechnungen nach den verschiedenen, für unterschiedliche Netzspannungen und Ableiterauswahl beschriebenen Verfahren	176