Inhalt

		Seite
Vorwor	t	2
Einleitu	ing	7
1	Anwendungsbereich	8
2	Analytische Modelle	8
2.1	Allgemeines	8
2.2	Grundlegende analytische Modelle für homogene Felder	9
3	Numerische Modelle	10
3.1	Allgemeine Information über numerische Modelle	10
3.2	2D-Modelle – Allgemeiner Ansatz	11
3.3	Leitfähigkeit von lebendem Gewebe	12
3.4	2D-Modelle – Rechenbedingungen	12
3.5	Koppelfaktor für inhomogene magnetische Felder	13
3.6	2D-Modelle – Rechenergebnisse	13
4	Validierung der Modelle	16
Anhang	g A (normativ) Scheibe in einem homogenen Feld	17
Anhang	g B (normativ) Scheibe in einem Feld, das durch einen unendlich langen Leiter erzeugt wird	20
B.1	Berechnungen für eine leitfähige Scheibe mit dem Radius R = 100 mm	21
B.2	Berechnungen für eine leitfähige Scheibe mit dem Radius R = 200 mm	27
Anhang	g C (normativ) Scheibe in einem Feld, das durch zwei parallele Leiter, die symmetrische Ströme führen, erzeugt wird	31
C.1	Berechnungen für eine leitfähige Scheibe mit dem Radius R = 100 mm	32
C.2	Berechnungen für eine leitfähige Scheibe mit dem Radius R = 200 mm	39
Anhang	g D (normativ) Scheibe in einem Feld, das durch eine kreisförmige Spule erzeugt wird	45
D.1	Berechnungen für eine leitfähige Scheibe mit dem Radius R = 100 mm	46
D.2	Berechnungen für R = 200 mm	54
Anhang	g E (informativ) Vereinfachter Ansatz für elektromagnetische Phänomene	60
Anhang	g F (informativ) Analytische Berechnung des durch einfache Induktionssysteme verursachten magnetischen Felds: ein Leiter, zwei parallele Leiter, die symmetrische Ströme führen, und eine kreisförmige Spule	62
F.1	Unendlich langer gerader Leiter	62
F.2	Zwei parallele Leiter, die symmetrische Ströme führen	62
F.3	Kreisförmige Spule	62
Anhang	g G (informativ) Gleichungen und numerische Modellierung von elektromagnetischen Phänomenen für eine typische Struktur: leitfähige Scheibe im elektromagnetischen Feld	64
Literatu	Irhinweise	66
Bilder		
Bild 1 -	- Leitfähige Scheibe in einer homogenen magnetischen Flussdichte	9
Bild 2 -	- Finite-Elemente-Maschenbildung (Dreiecke zweiter Ordnung) bei einer Scheibe und Einzelheiten	11

EN 62226-2-1:2005

	Seite
Bild 3 – Leitfähige Scheibe in einer homogenen magnetischen Flussdichte	11
Bild 4 – Änderung des Koppelfaktors für inhomogene magnetische Felder, <i>K</i> , mit der Entfernung für die drei magnetischen Feldquellen (Scheibenradius <i>R</i> = 100 mm)	14
Bild A.1 – Stromdichtelinien J und Verteilung von J in der Scheibe	17
Bild A.2 – $J = f(r)$: "Spot"-Verteilung der berechneten induzierten Stromdichte entlang einem Durchmesser einer homogenen Scheibe in einem homogenen magnetischen Feld	18
Bild A.3 – $J = f(r)$: Verteilung der berechneten integrierten induzierten Stromdichte entlang einem Durchmesser einer homogenen Scheibe in einem homogenen magnetischen Feld	19
Bild B.1 – Scheibe in einem magnetischen Feld, das durch den Strom in einem unendlich langen geraden Leiter erzeugt wurde	20
Bild B.2 – Stromdichtelinien J und Verteilung von J in der Scheibe (Quelle: einzelner Leiter, der in $d = 10 \text{ mm}$ von der Kante der Scheibe angeordnet ist)	21
Bild B.3 – "Spot"-Verteilung der induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: einzelner Leiter, der in $d = 10 \text{ mm}$ von der Kante der Scheibe angeordnet ist)	22
Bild B.4 – Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: einzelner Leiter, der in $d = 10 \text{ mm}$ von der Kante der Scheibe angeordnet ist)	23
Bild B.5 – Stromdichtelinien J und Verteilung von J in der Scheibe (Quelle: einzelner Leiter, der in $d = 100 \text{ mm}$ von der Kante der Scheibe angeordnet ist)	23
Bild B.6 – Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: einzelner Leiter, der in d = 100 mm von der Kante der Scheibe angeordnet ist)	24
Bild B.7 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe: R</i> = 100 mm)	25
Bild B.8 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe: R</i> = 100 mm)	26
Bild B.9 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe: R</i> = 200 mm)	28
Bild B.10 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe: R = 200 mm</i>)	29
Bild C.1 – Scheibe in einem magnetischen Feld, das durch zwei parallele Leiter, die symmetrische Ströme führen, erzeugt wurde	32
Bild C.2 – Stromdichtelinien <i>J</i> und Verteilung von <i>J</i> in der Scheibe (Quelle: zwei parallele Leiter, die symmetrische Ströme führen, durch 5 mm voneinander getrennt sind und in <i>d</i> = 7,5 mm von der Kante der Scheibe angeordnet sind)	32
Bild C.3 – $J_i = f[r]$: Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: zwei parallele Leiter, die symmetrische Ströme führen, durch 5 mm voneinander getrennt sind und in $d = 7,5$ mm von der Kante der Scheibe angeordnet sind)	33
Bild C.4 – Stromdichtelinien <i>J</i> und Verteilung von <i>J</i> in der Scheibe (Quelle: zwei parallele Leiter, die symmetrische Ströme führen, durch 5 mm voneinander getrennt sind und in <i>d</i> = 97,5 mm von der Kante der Scheibe angeordnet sind)	34
Bild C.5 – $J_i = f[r]$: Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: zwei parallele Leiter, die symmetrische Ströme führen, durch 5 mm voneinander getrennt sind und in $d = 97,5$ mm von der Kante der Scheibe angeordnet sind)	34
Bild C.6 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird, und für verschiedene Abstände <i>e</i> zwischen den beiden Leitern (homogene Scheibe: R = 100 mm)	35
Bild C.7 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird, und für verschiedene Abstände <i>e</i> zwischen den beiden Leitern <i>(homogene Scheibe: R = 100 mm)</i>	37

Bild C.8	B – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird, und für verschiedene Abstände <i>e</i> zwischen den beiden Leitern (homogene Scheibe: $R = 200 \text{ mm}$)40
Bild C.9	9 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird, und für verschiedene Abstände <i>e</i> zwischen den beiden Leitern (<i>homogene Scheibe:</i> $R = 200 \text{ mm}$)42
Bild D.1	– Leitfähige Scheibe in einem durch eine Spule erzeugten magnetischen Feld
Bild D.2	P – Stromdichtelinien <i>J</i> und Verteilung von <i>J</i> in der Scheibe (Quelle: Spule mit dem Radius r = 50 mm, leitfähige Scheibe <i>R</i> = 100 mm, <i>d</i> = 5 mm)46
Bild D.3	$J = J_i = f[r]$: Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: Spule mit dem Radius $r = 50$ mm, leitfähige Scheibe $R = 100$ mm, d = 5 mm)
Bild D.4	– Stromdichtelinien <i>J</i> und Verteilung von <i>J</i> in der Scheibe (Quelle: Spule mit dem Radius $r = 200 \text{ mm}$, leitfähige Scheibe $R = 100 \text{ mm}$, $d = 5 \text{ mm}$)
Bild D.5	$5 - J_i = f[r]$: Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (Quelle: Spule mit dem Radius $r = 200 \text{ mm}$, leitfähige Scheibe $R = 100 \text{ mm}$, d = 5 mm)
Bild D.6	6 – Stromdichtelinien <i>J</i> und Verteilung von <i>J</i> in der Scheibe (Quelle: Spule mit dem Radius $r = 10 \text{ mm}$, leitfähige Scheibe $R = 100 \text{ mm}$, $d = 5 \text{ mm}$)
Bild D.7	$Y - J_i = f[r]$: Verteilung der integrierten induzierten Stromdichte entlang dem Durchmesser AA der Scheibe (<i>Quelle: Spule mit dem Radius r</i> = 10 mm, leitfähige Scheibe R = 100 mm, d = 5 mm)
Bild D.8	B – Parameterkurve für den Faktor K für Abstände von bis zu 300 mm zu einer Quelle, die aus einer Spule mit verschiedenem Radius r besteht (homogene Scheibe: $R = 100$ mm)50
Bild D.9	9 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die aus einer Spule mit verschiedenem Radius <i>r</i> besteht (homogene Scheibe: $R = 100 \text{ mm}$)52
Bild D.1	0 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die aus einer Spule mit verschiedenem Radius <i>r</i> besteht (homogene Scheibe: $R = 200 \text{ mm}$)55
Bild D.1	1 – Parameterkurve für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die aus einer Spule mit verschiedenem Radius <i>r</i> besteht (homogene Scheibe: $R = 200 \text{ mm}$)
Tabelle	n
Tabelle	1 – Numerische Werte des Koppelfaktors für inhomogene magnetische Felder, K , für verschiedene Arten von magnetischen Feldquellen und verschiedene Entfernungen zwischen Quelle und leitfähiger Scheibe ($R = 100 \text{ mm}$)
Tabelle	B.1 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe:</i> $R = 100 \text{ mm}$)25
Tabelle	B.2 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe: R</i> = 100 mm)27
Tabelle	B.3 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe:</i> $R = 200 \text{ mm}$)
Tabelle	B.4 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von einem unendlich langen Leiter gebildet wird (<i>Scheibe: R</i> = 200 mm)
Tabelle	C.1 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird <i>(homogene Scheibe: R = 100 mm)</i>
Tabelle	C.2 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird <i>(homogene Scheibe: $R = 100 \text{ mm}$)</i>

Seite

Tabelle C.3 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 300 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird <i>(homogene Scheibe: R = 200 mm)</i>	41
Tabelle C.4 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die von zwei parallelen Leitern, die symmetrische Ströme führen, gebildet wird (homogene Scheibe: R = 200 mm)	43
Tabelle D.1 – Numerische Werte für den Faktor K für Abstände von bis zu 300 mm zu einer Quelle, die aus einer Spule besteht (homogene Scheibe: $R = 100 \text{ mm}$)	51
Tabelle D.2 – Numerische Werte für den Faktor K für Abstände von bis zu 1 900 mm zu einerQuelle, die aus einer Spule besteht (homogene Scheibe: R = 100 mm)	53
Tabelle D.3 – Numerische Werte für den Faktor K für Abstände von bis zu 300 mm zu einer Quelle, die aus einer Spule besteht (homogene Scheibe: $R = 200 \text{ mm}$)	56
Tabelle D.4 – Numerische Werte für den Faktor <i>K</i> für Abstände von bis zu 1 900 mm zu einer Quelle, die aus einer Spule besteht <i>(homogene Scheibe: R = 200 mm)</i>	58