Monte-Carlo Simulations of Image Analysis for flexible and high-resolution Registration Metrol

Conference: EMLC 2009 - 25th European Mask and Lithography Conference
01/12/2009 - 01/15/2009 at Dresden, Germany

Proceedings: EMLC 2009

Pages: 7Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Arnz, M.; Klose, G. (Carl Zeiss SMT AG, 73447 Oberkochen, Germany)
Troll, G.; Beyer, D.; Mueller, A. (Carl Zeiss SMS GmbH, 07745 Jena, Germany)

The continuous progress of PROVE, the new photomask registration and overlay measurement tool currently under development at Carl Zeiss has been reported at mask related conferences since it’s first publication at EMLC 2008. The project has moved in the past year from a final design on paper to functional hardware in the lab. Major tool components such as the climate control unit, the automated mask handling system and the metrology stage have been assembled and successfully tested. The scope of this paper is to report on the current status of PROVE and furthermore present results from simulations utilizing the image analysis routines of the tool. Monte-Carlo simulations were used to analyze the impact of several realistic tool limitations (camera noise, stage and focus noise and imaging telecentricity) on the image analysis process. The evaluation itself was based on a conventional threshold approach to perform both registration and CD measurement simultaneously. The results show, that the routines can deal with the tool imperfections and limit the contribution to the reproducibility error for standard registration markers to a negligible part. Even single contact holes suffer only from small errors, when camera noise is low and image averaging is increased. Employing a generally used test pattern the CD test results also confirm a sufficiently small error contribution to the CD non-uniformity reproducibility.