Super-resolution for 4-D SAR Tomography via Compressive Sensing

Conference: EUSAR 2010 - 8th European Conference on Synthetic Aperture Radar
06/07/2010 - 06/10/2010 at Aachen, Germany

Proceedings: EUSAR 2010

Pages: 4Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Zhu, Xiaoxiang; Bamler, Richard (Technical University of Munich (TUM), Germany)
Bamler, Richard (German Aerospace Center (DLR), Germany)

SAR tomography (TomoSAR) extends the synthetic aperture principle into the elevation direction for 3-D imaging. Since the orbits of modern space-borne SAR systems, like TerraSAR-X, are tightly controlled, the elevation resolution (depends on the elevation aperture size) is at least an order of magnitude lower than in range and azimuth. Hence, super-resolution algorithms are desired. The high anisotropic 3D resolution element renders the signals sparse in elevation. This property suggests using compressive sensing (CS) methods. The paper presents the theory of 4-D (differential, i.e. space-time) CS TomoSAR and compares it with classical tomographic methods. Super-resolution properties and point localization accuracies are demonstrated using simulations and real data. A CS reconstruction of a building complex from TerraSAR-X spotlight date is presented.