AUV Pipeline Following using Reinforcement Learning

Conference: ISR/ROBOTIK 2010 - ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics)
06/07/2010 - 06/09/2010 at Munich, Germany

Proceedings: ISR/ROBOTIK 2010

Pages: 8Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Fjerdingen, Sigurd A.; Kyrkjebø, Erik; Transeth, Aksel A. (SINTEF ICT, 7465 Trondheim, Norway)

This paper analyzes the application of several reinforcement learning techniques for continuous state and action spaces to pipeline following for an autonomous underwater vehicle (AUV). Continuous space SARSA is compared to the actor-critic CACLA algorithm, and is also extended into a supervised reinforcement learning architecture. A novel exploration method using the skew-normal stochastic distribution is proposed, and evidence towards advantages in the case of tabula rasa exploration is presented. Results are validated on a realistic simulator of the AUV, and confirm the applicability of reinforcement learning to optimize pipeline following behavior.