Nanostructuring of InP by colloidal lithography and ICP etching for photovoltaic applications

Conference: IPRM 2011 - 23th International Conference on Indium Phosphide and Related Materials
05/22/2011 - 05/26/2011 at Berlin, Germany

Proceedings: IPRM 2011

Pages: 4Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Naureen, Shagufta; Rajagembu, Perumal; Sanatinia, Reza; Shahid, Naeem; Li, Mingyu; Anand, Srinivasan (School of Information and Communication Technology, Royal Institute of Technology Electrum 229, 164 40 Kista, Sweden)

We demonstrate a simple and cost effective method to fabricate InP nanopillars using silica particles as masks for etching InP. Oxygen plasma treatment of InP surfaces before dispersion of colloidal mask particles improved surface wettability significantly and helped in uniform coverage of the particles over large areas. Pillars with varied sizes were fabricated by dispersing colloidal SiO2 with different sizes on the sample and/or by reducing size of particles after dispersion. Nanopillars with different heights and shapes from near cylindrical to conical were obtained by varying etch process parameters and by progressive erosion of colloidal SiO2 particle (mask). Pillars with aspect ratios in excess of 15:1 have been obtained. Investigations are also made on regular close packed hexagonal structures with wide area coverage. Size reduction of colloidal particles after dispersion is used to overcome the lag effect observed in the etching of close packed structures. The demonstrated nanostructuring method is attractive for producing photonic crystals and antireflecting surfaces in solar cells.