Spatial Field Reconstruction with Distributed Kernel Least Squares in Mobile Sensor Networks

Conference: SCC 2017 - 11th International ITG Conference on Systems, Communications and Coding
02/06/2017 - 02/09/2017 at Hamburg, Germany

Proceedings: ITG-Fb. 268: SCC 2017

Pages: 6Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Authors:
Shin, Ban-Sok; Paul, Henning; Dekorsy, Armin (Department of Communications Engineering, University of Bremen, Bremen, Germany)

Abstract:
Reconstructing spatial fields by sensor networks is a common problem in environmental monitoring applications. Usually, this task requires nonlinear techniques due to the underlying physical process. The so-called KDiCE algorithm is able to estimate such a spatial field in a distributed fashion by a nonlinear regression using kernel methods. To further enhance its reconstruction performance we consider a mobile sensor network in this paper. We utilize an iterative distributed scheme based on centroidal Voronoi tessellation where the sensors move to the center of mass of their Voronoi region. We include this sensor movement into the KDiCE algorithm and provide performance results regarding a distributed reconstruction of diffusion fields. Our evaluations show a significant gain in the performance by including sensor movement.