Joint Interference Suppression and Group-Based Power Allocation via Alternating Optimization for DS-CDMA Networks with Multihop Relaying

Conference: European Wireless 2011 - Sustainable Wireless Technologies
04/27/2011 - 04/29/2011 at Vienna, Austria

Proceedings: European Wireless 2011

Pages: 5Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Lamare, Rodrigo C. de (Communications Research Group, Department of Electronics, University of York, York Y010 5DD, UK)

This work presents joint interference suppression and power allocation algorithms for DS-CDMA networks with multiple hops and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays subject to group-based power constraints and the design of linear receivers for interference suppression is proposed. A constrained minimum mean-squared error (MMSE) design for the receive filters and the power allocation vectors is devised along with an MMSE channel estimator. In order to solve the proposed optimization efficiently, a method to form an effective group of users and an alternating optimization strategy are devised with recursive alternating least squares (RALS) algorithms for estimating the parameters of the receiver, the power allocation and the channels. Simulations show that the proposed algorithms obtain significant gains in capacity and performance over existing schemes.