Control of a SiC 2.5 MHz resonant full-bridge inverter for inductively driven plasma

Conference: PCIM Europe 2019 - International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
05/07/2019 - 05/09/2019 at Nürnberg, Deutschland

Proceedings: PCIM Europe 2019

Pages: 8Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Authors:
Simon, Christoph; Eizaguirre, Santiago; Denk, Fabian; Heidinger, Michael; Kling, Rainer; Heering, Wolfgang (Karlsruhe Institute of Technology, Light Technology Institute, Germany)

Abstract:
The electronic ballast of an inductively driven plasma faces a mostly inductive, variable load impedance. The SiC full-bridge inverter uses the inductive behavior to achieve zero-voltage-switching and a switching frequency of 2.5 MHz, at 3.9 kVA and 764W in the plasma. The control is realized on a modern, small TI Piccolo microcontroller with a high-resolution PWM module and compensates for the variable load impedance. We present design and experimental results of a 2.5 MHz inverter for inductively driven plasma without the need for a large FPGA controller.