Generalized Deduplication: Lossless Compression for Large Amounts of Small IoT Data

Conference: European Wireless 2019 - 25th European Wireless Conference
05/02/2019 - 05/04/2019 at Aarhus, Denmark

Proceedings: European Wireless 2019

Pages: 5Language: englishTyp: PDF

Personal VDE Members are entitled to a 10% discount on this title

Vestergaard, Rasmus; Lucani, Daniel E.; Zhang, Qi (DIGIT and Department of Engineering, Aarhus University, Denmark)

We show that a generalization of deduplication can enable compressed storage of sensor data. The method uses error-correcting codes in a non-traditional manner to identify similar elements, and then leverages this similarity for compression. Using Reed Solomon codes, our method has a theoretical potential to reduce the cost of storing chunks of 16 bytes to as much as 5 times less, and up to 65 times less for chunks of 255 bytes. We define a simple model for sensor data, and show how our approach is able to compress data from the model, realizing its compression potential with much smaller data sets than classic deduplication requires. This demonstrates that generalized deduplication can be a viable solution for practical lossless compression of small IoT data in scenarios where classic deduplication is ineffective.