High Resolution SAR Classification using Rényi Entropy Constrained Spectrum Estimates

Konferenz: EUSAR 2012 - 9th European Conference on Synthetic Aperture Radar
23.04.2012 - 26.04.2012 in Nuremberg, Germany

Tagungsband: EUSAR 2012

Seiten: 4Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Popescu, Anca (University Politehnica Bucharest, Romania)
Datcu, Mihai (University Politehnica Bucharest, Romania/German Aerospace Center, Germany)

This paper discusses a feature extraction procedure based on the estimation of spectral components of the complex SAR image for scene classification. The estimation is performed in an iterative manner, using the periodogram of SAR image patches of fixed size. A Rényi Entropy constraint is introduced in the process of selection of best spectral components for content characterization. Results are presented on a database consisting of 1650 image patches covering urban areas. Results show that by selecting the spectral components that maximize the Rényi entropy of the spectrum with ??=3 can improve the accuracy of the classification.