Wavelet-Based Compressed Sensing for SAR Tomography of Forested Areas

Konferenz: EUSAR 2012 - 9th European Conference on Synthetic Aperture Radar
23.04.2012 - 26.04.2012 in Nuremberg, Germany

Tagungsband: EUSAR 2012

Seiten: 4Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Aguilera, Esteban; Nannini, Matteo; Reigber, Andreas (Microwaves and Radar Institute, German Aerospace Center (DLR)

SAR tomography is a thriving three-dimensional imaging modality that is commonly tackled by spectral estimation techniques. As a matter of fact, the backscattered power along the vertical direction can be readily obtained by computing the Fourier spectrum of a stack of multi-baseline measurements. Alternatively, recent groundbreaking work has addressed the tomographic problem from a parametric viewpoint, thus estimating effective scattering centers by means of covariance matching techniques. In this paper, we introduce a compressed sensing based covariance matching approach that allows us to retrieve the complete vertical structure of forested areas. For this purpose, we employ sparse representations in the wavelet domain and propose suitable pre-filtering techniques. Finally, we validate this approach by using fully polarimetric L-band data acquired by the E-SAR sensor of DLR.