Euler-Poincaré Equation and Geometrical Mechanics

Konferenz: NDES 2012 - Nonlinear Dynamics of Electronic Systems
11.07.2012 - 13.07.2012 in Wolfenbüttel, Germany

Tagungsband: NDES 2012

Seiten: 4Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Kolev, Boris (CNRS and Aix-Marseille University, CMI, 39 rue F. Joliot-Curie, 13453 Marseille Cedex 13, France)

I discuss the Euler-Poincar´e equation as described in Poincaré’s original paper. I consider, then, Lagrangian systems with lot of symmetries, and for which this equation simplifies. Typical examples are furnished by semi-invariant Riemannian metrics on Lie groups. In that case, the Euler-Poincaré equation reduces to a generalization (to an arbitrary Lie group) of the Euler equation for the rigid body. I present several applications of this formalism in mathematical physics.