A Priori SNR Estimation Using Weibull Mixture Model

Konferenz: Speech Communication - 12. ITG-Fachtagung Sprachkommunikation
05.10.2016 - 07.10.2016 in Paderborn, Deutschland

Tagungsband: ITG-Fb. 267: Speech Communication

Seiten: 5Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Chinaev, Aleksej; Heitkaemper, Jens; Haeb-Umbach, Reinhold (Department of Communications Engineering, Paderborn University, 33100 Paderborn, Germany)

This contribution introduces a novel causal a priori signal-to-noise ratio (SNR) estimator for single-channel speech enhancement. To exploit the advantages of the generalized spectral subtraction, a normalized α-order magnitude (NAOM) domain is introduced where an a priori SNR estimation is carried out. In this domain, the NAOM coefficients of noise and clean speech signals are modeled by a Weibull distribution and a Weibullmixturemodel (WMM), respectively. While the parameters of the noise model are calculated from the noise power spectral density estimates, the speech WMM parameters are estimated from the noisy signal by applying a causal Expectation-Maximization algorithm. Further a maximum a posteriori estimate of the a priori SNR is developed. The experiments in different noisy environments show the superiority of the proposed estimator compared to the well-known decision-directed approach in terms of estimation error, estimator variance and speech quality of the enhanced signals when used for speech enhancement.