Extraction of Interpretable Features from Temporal Measurements using Approximate Prototypes

Konferenz: Sensoren und Messsysteme - 19. ITG/GMA-Fachtagung
26.06.2018 - 27.06.2018 in Nürnberg, Deutschland

Tagungsband: ITG-Fb. 281: Sensoren und Messsysteme

Seiten: 4Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Autoren:
Thiel, Christian (BENTELER Steel/Tube GmbH, Residenzstr. 1, 33104 Paderborn, Germany & Universität Paderborn, Elektrische Messtechnik EIM-E, Warburger Str. 100, 33098 Paderborn, Germany)
Feldmann, Nadine; Henning, Bernd (Universität Paderborn, Elektrische Messtechnik EIM-E, Warburger Str. 100, 33098 Paderborn, Germany)

Inhalt:
Measured data in the manufacturing industry becomes increasingly diverse. To capture every detail in the production process, sensors provide locally and temporally resolved measurements, thus producing time series like data. In order to make this data usable, a feature extraction is mandatory. In this work, we firstly discuss time series clustering and prototype generation in the context of real world data from a tube production process. Secondly, we present a method to convert the distances between time series and the previously calculated prototypes to meaningful similarities. This enables us to infer process knowledge of domain experts to unseen data.