Orientation dependent stiffness optimization of wearable robotics components

Konferenz: ISR 2018 - 50th International Symposium on Robotics
20.06.2018 - 21.06.2016 in München, Germany

Tagungsband: ISR 2018

Seiten: 6Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Kriegesmann, Benedikt; Fleming, Erik A. (Hamburg University of Technology, Germany)
Weidner, Robert (Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Laboratory of Manufacturing Technologies, Germany)

Wearable robotic systems should be as lightweight as possible and interfere as little as possible with their user. At the same time, the components of such support system need to be provide sufficient stiffness and strength. In the current paper, these requirements are interpreted as a multi-objective design optimization problem, which is tackled using topology optimization. By using topology optimization the large design freedom provided by additive manufacturing techniques is explored. An approach is presented which translates the multi-objective optimization with concurring objectives into a single-objective optimization problem. The approach is applied to a component of a wearable wearable support system, showing that it is possible to increase stiffness in load bearing direction and at the same time reduce weight and user interference.