Experimental and simulative analysis of the thermal behavior of high voltage cable joints

Konferenz: VDE-Hochspannungstechnik 2018 - ETG-Fachtagung
12.11.2018 - 14.11.2018 in Berlin, Deutschland

Tagungsband: ETG-Fb. 157: VDE-Hochspannungstechnik

Seiten: 6Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Koch, Myriam (Pfisterer Kontaktsysteme GmbH, Winterbach, Germany)
Hohloch, Jens (Pfisterer Ixosil AG, Altdorf, Switzerland)
Wirth, Isabell; Sturm, Sebastian; Zink, Markus H.; Kuechler, Andreas (Hochschule Würzburg-Schweinfurt, Schweinfurt, Germany)

Nowadays, cable systems are often preferred when deciding on the type of new transmission lines even in the high and extra high voltage range. One of the main reasons is the better public acceptance. In addition, the power to be transmitted in the grid is increasing leading to increased ohmic losses and thus, to higher thermal stress on the materials. The investigations in this contribution focus on cable joints, which represent important and decisive components of cable systems. In order to optimize the design and to ensure reliable operation over the entire service life, the temperature profile within these components is of special interest. For their detailed investigation, a test circuit was set up consisting of a cable section and sections with build-up stages of a cable joint. A large number of measuring points were defined also at points where no measurement is possible in normal operation. With a thermographic camera the surface temperature distributions were observed. With the laboratory setup temperature profiles under various load conditions were recorded. A detailed FEM model was built and verified with help of these measurements. The model permits the investigation of specific questions of cable systems such as the comparison of temperature loads resulting from normal operating conditions and of test procedures according to the relevant standards. Besides others the effect of stressing the insulation and sealing system by heating the inner conductor vs. heating from outside by surrounding water is discussed.