Genetic Algorithm-based Polar Code Construction for the AWGN Channel

Konferenz: SCC 2019 - 12th International ITG Conference on Systems, Communications and Coding
11.02.2019 - 14.02.2019 in Rostock, Germany

doi:10.30420/454862007

Tagungsband: SCC 2019

Seiten: 6Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Autoren:
Elkelesh, Ahmed; Ebada, Moustafa; Cammerer, Sebastian; Brink, Stephan ten (Institute of Telecommunications, Pfaffenwaldring 47, University of Stuttgart, 70569 Stuttgart, Germany)

Inhalt:
We propose a new polar code construction framework (i.e., selecting the frozen bit positions) for the additive white Gaussian noise (AWGN) channel, tailored to a given decoding algorithm, rather than based on the (not necessarily optimal) assumption of successive cancellation (SC) decoding. The proposed framework is based on the Genetic Algorithm (GenAlg), where populations (i.e., collections) of information sets evolve successively via evolutionary transformations based on their individual error-rate performance. These populations converge towards an information set that fits the decoding behavior. Using our proposed algorithm, we construct a polar code of length 2048 with code rate 0.5, without the CRC-aid, tailored to plain successive cancellation list (SCL) decoding, achieving the same error-rate performance as the CRC-aided SCL decoding, and leading to a coding gain of 1dB at BER of 10(exp −6). Further, a belief propagation (BP)-tailored polar code approaches the SCL error-rate performance without any modifications in the decoding algorithm itself.