Constant-Weight Convolutional Codes for Index Modulation

Konferenz: WSA 2021 - 25th International ITG Workshop on Smart Antennas
10.11.2021 - 12.11.2021 in French Riviera, France

Tagungsband: ITG-Fb. 300: WSA 2021

Seiten: 6Sprache: EnglischTyp: PDF

Bailon, Daniel Nicolas; Freudenberger, Juergen (Institute for System Dynamics, HTWG Konstanz, University of Applied Sciences, Germany)
Kuehn, Volker (Institute of Communications Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany)

The encoding of antenna patterns with generalized spatial modulation as well as other index modulation techniques require w-out-of-n encoding where all binary vectors of length n have the same weight w. This constant-weight property cannot be obtained by conventional linear coding schemes. In this work, we propose a new class of constant-weight codes that result from the concatenation of convolutional codes with constant-weight block codes. These constant-weight convolutional codes are nonlinear binary trellis codes that can be decoded with the Viterbi algorithm. Some constructed constant-weight convolutional codes are optimum free distance codes. Simulation results demonstrate that the decoding performance with Viterbi decoding is close to the performance of the best-known linear codes. Similarly, simulation results for spatial modulation with a simple on-off keying show a significant coding gain with the proposed coded index modulation scheme.