Design Optimization of an AC Filter Inductor for 350kW High-Effi-ciency Inverter Applications

Konferenz: PCIM Conference 2025 - International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
06.05.2025 - 08.05.2025 in Nürnberg, Germany

doi:10.30420/566541267

Tagungsband: PCIM Conference 2025

Seiten: Sprache: EnglischTyp: PDF

Persönliche VDE-Mitglieder erhalten auf diesen Artikel 10% Rabatt

Autoren:
Thummala, Prasanth; Cao, Jinzhou; Liu, Bin; Kazemi, Morteza; Qi, Yu; Zou, Yangju; Pang, Yong

Inhalt:
This paper presents the optimized design and FEM simulations of a line-frequency AC filter inductor for a 350 kW solar inverter using ANSYS Maxwell. The design enhances efficiency while minimizing losses and weight through the optimization of core material, winding configuration, and air gap. A reluctance model of the proposed inductor is developed to provide initial analytical insights. FEM simulations are performed to analyze the magnetic flux distribution, core saturation, and key performance parameters, including incremental inductance under DC bias, AC resistance, and maximum flux density. The simu-lation results are validated against experimental measurements, demonstrating strong agreement and confirming the accuracy of the design approach.