Evaluation of the generalization performance of a CNN-assisted BOFDA system
                  Konferenz: Sensoren und Messsysteme - 21. ITG/GMA-Fachtagung
                  10.05.2022 - 11.05.2022 in Nürnberg              
Tagungsband: ITG-Fb. 303: Sensoren und Messsysteme
Seiten: 4Sprache: EnglischTyp: PDF
            Autoren:
                          Karapanagiotis, Christos (Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany)
                      
              Inhalt:
              Brillouin Optical Frequency Domain Analysis (BOFDA) is a powerful and well-established method for static distributed sensing of temperature and strain. Recently, we demonstrated a BOFDA system based on convolutional neural network which shortens the measurement time considerably. In this paper, we apply leave-one-out cross validation to evaluate the generalization performance and provide an unbiased and reliable machine learning model for a time-efficient BOFDA system.            

