Concept of a monolithic stiffness-compensated mechanism for high-resolution force sensors

Konferenz: Sensoren und Messsysteme - 21. ITG/GMA-Fachtagung
10.05.2022 - 11.05.2022 in Nürnberg

Tagungsband: ITG-Fb. 303: Sensoren und Messsysteme

Seiten: 4Sprache: EnglischTyp: PDF

Autoren:
Wittke, Martin; Torres Melgarejo, Mario Andre; Theska, Rene (Institute for Design and Precision Engineering, Precision Engineering Group, Technische Universität Ilmenau, Ilmenau, Germany)

Inhalt:
Monolithic compliant mechanisms with concentrated compliances are often used in high-resolution force sensors and precision balances. Since the measurement resolution is vastly limited by the bending stiffness of the compliant joints, the thinnest part of the joints is reduced to down to 50 µm. A further reduction encounters technological limitations and creates new side effects. Compensation for the "positive" stiffness of the mechanism can be achieved by integrating an element with "negative" stiffness that generates a counteracting force or torque when deflected. In the literature, preloaded tension springs, buckled leaf springs as well as trim masses are predominantly for that purpose. However, most existing approaches are either not monolithic, elaborate to readjust, associated with parasitic forces and torques, or only applicable in a defined orientation relative to the vector of gravity. This paper presents a new concept of monolithic stiffness-compensated mechanisms for use in high-resolution force sensors that is independent of spatial orientation. The negative stiffness is generated by a preloaded spring element of an integrated compensation mechanism. The preload force can be easily adjusted. The compensation force is generated simultaneously with the deflection and transmitted to the main mechanism by a lever and a dedicated coupling element to avoid parasitic effects as much as possible. A suitable design minimizes parasitic motions and avoids buckling of the thin joints as a result of the relatively high preloading force. Finite element simulations are performed to investigate the behavior of the mechanism and to validate the concept.