Variability Reduction in RRAM through Device Stack Engineering

Konferenz: MikroSystemTechnik KONGRESS 2025 - Mikroelektronik/Mikrosystemtechnik und ihre Anwendungen – Nachhaltigkeit und Technologiesouveränität
27.10.2025-29.10.2025 in Duisburg, Germany

doi:10.30420/456614050

Tagungsband: MikroSystemTechnik Kongress 2025

Seiten: 3Sprache: EnglischTyp: PDF

Autoren:
Bende, Ankit; Paul, Godwin; Solfronk, Oliver; Hoffmann-Eifert, Susanne; Dittmann, Regina; Rana, Vikas

Inhalt:
Resistive random-access memory (RRAM) is a leading candidate for next-generation non-volatile memory and neuromorphic computing systems, owing to its high density, low power consumption, and compatibility with CMOS technology. However, device-to-device and cycle-to-cycle variability, particularly in the SET voltage (VSET), can significantly degrade computational accuracy and reliability in both analog and digital RRAM-based operations. In this work, we investigate material stack engineering as a strategy to suppress VSET variability. Three RRAM stacks: Pt/TaOx/Ta/Pt, Pt/HfO2/TiOx/Ti/Pt, and Pt/TaOx/Ti/Pt were fabricated on a 180-nm CMOS platform. Statistical analysis reveals that introducing a thin Ti or TiOx interlayer at the electrode–oxide interface markedly reduces variability. The Pt/TaOx/Ti/Pt stack achieved the lowest coefficient of variation (5.9%), corresponding to a ~60% reduction compared to the baseline Pt/TaOx/Ta/Pt device. These results demonstrate that interface-engineered RRAM stacks can enable more stable switching, offering a viable pathway toward reliable and energy-efficient neuromorphic hardware.